Emergence and Bifurcations of Lyapunov Manifolds in Nonlinear Wave Equations

被引:1
作者
Bakri, Taoufik [1 ]
Meijer, Hil G. E. [1 ]
Verhulst, Ferdinand [1 ]
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
Nonlinear waves; Averaging; Bifurcations; Resonance; Parametric excitation;
D O I
10.1007/s00332-009-9045-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Persistence and bifurcations of Lyapunov manifolds can be studied by a combination of averaging-normalization and numerical bifurcation methods. This can be extended to infinite-dimensional cases when using suitable averaging theorems. The theory is applied to the case of a parametrically excited wave equation. We find fast dynamics in a finite, resonant part of the spectrum and slow dynamics elsewhere. The resonant part corresponds with an almost-invariant manifold and displays bifurcations into a wide variety of phenomena among which are 2- and 3-tori.
引用
收藏
页码:571 / 596
页数:26
相关论文
共 20 条
[1]  
[Anonymous], 2007, Appl. Math. Sci
[2]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[3]  
Bates PW, 1998, MEM AM MATH SOC, V135, P1
[4]  
Bates PW, 1999, COMMUN PUR APPL MATH, V52, P983, DOI 10.1002/(SICI)1097-0312(199908)52:8<983::AID-CPA4>3.0.CO
[5]  
2-O
[6]  
Bates PW., 1989, DYNAMICS REPORTED, P1, DOI DOI 10.1007/978-3-322-96657-5_
[7]  
BUITELAAR RP, 1993, THESIS U UTRECHT
[8]  
DHOOGE A, 2008, MATH COMPUT MOD DYN, P147
[9]   C-1 approximations of inertial manifolds for dissipative nonlinear equations [J].
Jones, DA ;
Titi, ES .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) :54-86
[10]  
Levitin VV, 1995, CONTENT MULTIPLATFOR