Multidimensional Reversible Solid Oxide Fuel Cell Modeling for Embedded Applications

被引:36
作者
Ma, Rui [1 ,2 ,3 ]
Gao, Fei [1 ,2 ]
Breaz, Elena [1 ,2 ,4 ]
Huangfu, Yigeng [3 ]
Briois, Pascal [5 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST UMR CNRS 6174, Energy Dept, F-90010 Belfort, France
[2] FR CNRS 3539, Fuel Cell Lab, F-90010 Belfort, France
[3] Northwestern Polytech Univ, Xian 710072, Shaanxi, Peoples R China
[4] Tech Univ Cluj Napoca, Cluj Napoca 400604, Romania
[5] Univ Bourgogne Franche Comte, Dept MN2S, FEMTO ST UMR CNRS 6174, F-25200 Montbeliard, France
关键词
Solid oxide electrolysis cell (SOEC); solid oxide fuel cell (SOFC); physical modeling; multi-dimensional; iterative algorithm; H2O/CO2; CO-ELECTROLYSIS; HYDROGEN-PRODUCTION; MATHEMATICAL-MODEL; PERFORMANCE; SOEC;
D O I
10.1109/TEC.2017.2762962
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a multiphysical modeling of a two-dimensional (2-D) reversible tubular solid oxide cell. The developed model can represent both a solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) operations. By taking into account of the electrochemical, fluidic, and thermal physical phenomena, the presented model can accurately describe the multiphysical effects inside a cell for both fuel cell and electrolysis cell operation under entire working range of cell current and temperature. In addition, an iterative solver is proposed which is used to solve the 2-D distribution of physical quantities along the tubular cell. The proposed model is suitable for embedded applications, such as real-time simulation or online diagnostic control. The reversible solid oxide cell model is then validated experimentally in both SOEC and SOFC configurations under different species partial pressures, operating temperatures, and current densities conditions.
引用
收藏
页码:692 / 701
页数:10
相关论文
共 29 条
[21]   Mathematical analysis of planar solid oxide fuel cells [J].
Pramuanjaroenkij, Anchasa ;
Kakac, Sadik ;
Zhou, Xiang Yang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (10) :2547-2565
[22]   Assessment of finite volume modeling approaches for intermediate temperature Solid Oxide Fuel Cells working with CO-rich syngas fuels [J].
Spallina, V. ;
Mastropasqua, L. ;
Iora, P. ;
Romano, M. C. ;
Campanari, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (43) :15012-15031
[23]   Physical principles for the calculation of equilibrium potential for co-electrolysis of steam and carbon dioxide in a Solid Oxide Electrolyzer Cell (SOEC) [J].
Stempien, Jan Pawel ;
Liu, Qinglin ;
Ni, Meng ;
Sun, Qiang ;
Chan, Siew Hwa .
ELECTROCHIMICA ACTA, 2014, 147 :490-497
[24]   Mathematical modelling and experimental validation of an anode-supported tubular solid oxide fuel cell for heat and power generation [J].
Tonekabonimoghadam, S. ;
Akikur, R. K. ;
Hussain, M. A. ;
Hajimolana, S. ;
Saidur, R. ;
Ping, H. W. ;
Chakrabarti, M. H. ;
Brandon, N. P. ;
Aravind, P. V. ;
Nayagar, J. N. S. ;
Hashim, M. A. .
ENERGY, 2015, 90 :1759-1768
[25]   A physically based dynamic model for solid oxide fuel cells [J].
Wang, Caisheng ;
Nehrir, M. Hashern .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2007, 22 (04) :887-897
[26]   Modeling of CH4-assisted SOEC for H2O/CO2 co-electrolysis [J].
Xu, Haoran ;
Chen, Bin ;
Irvine, John ;
Ni, Meng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (47) :21839-21849
[27]   Evaluation and modeling of performance of anode-supported solid oxide fuel cell [J].
Yakabe, H ;
Hishinuma, M ;
Uratani, M ;
Matsuzaki, Y ;
Yasuda, I .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :423-431
[28]   Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells [J].
Zhu, HY ;
Kee, RJ ;
Janardhanan, VM ;
Deutschmann, O ;
Goodwin, DG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2427-A2440
[29]   A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies [J].
Zhu, HY ;
Kee, RJ .
JOURNAL OF POWER SOURCES, 2003, 117 (1-2) :61-74