Multidimensional Reversible Solid Oxide Fuel Cell Modeling for Embedded Applications

被引:36
作者
Ma, Rui [1 ,2 ,3 ]
Gao, Fei [1 ,2 ]
Breaz, Elena [1 ,2 ,4 ]
Huangfu, Yigeng [3 ]
Briois, Pascal [5 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST UMR CNRS 6174, Energy Dept, F-90010 Belfort, France
[2] FR CNRS 3539, Fuel Cell Lab, F-90010 Belfort, France
[3] Northwestern Polytech Univ, Xian 710072, Shaanxi, Peoples R China
[4] Tech Univ Cluj Napoca, Cluj Napoca 400604, Romania
[5] Univ Bourgogne Franche Comte, Dept MN2S, FEMTO ST UMR CNRS 6174, F-25200 Montbeliard, France
关键词
Solid oxide electrolysis cell (SOEC); solid oxide fuel cell (SOFC); physical modeling; multi-dimensional; iterative algorithm; H2O/CO2; CO-ELECTROLYSIS; HYDROGEN-PRODUCTION; MATHEMATICAL-MODEL; PERFORMANCE; SOEC;
D O I
10.1109/TEC.2017.2762962
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a multiphysical modeling of a two-dimensional (2-D) reversible tubular solid oxide cell. The developed model can represent both a solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) operations. By taking into account of the electrochemical, fluidic, and thermal physical phenomena, the presented model can accurately describe the multiphysical effects inside a cell for both fuel cell and electrolysis cell operation under entire working range of cell current and temperature. In addition, an iterative solver is proposed which is used to solve the 2-D distribution of physical quantities along the tubular cell. The proposed model is suitable for embedded applications, such as real-time simulation or online diagnostic control. The reversible solid oxide cell model is then validated experimentally in both SOEC and SOFC configurations under different species partial pressures, operating temperatures, and current densities conditions.
引用
收藏
页码:692 / 701
页数:10
相关论文
共 29 条
[1]   The effect of coupled mass transport and internal reforming on modeling of solid oxide fuel cells part I: Channel-level model development and steady-state comparison [J].
Albrecht, Kevin J. ;
Braun, Robert J. .
JOURNAL OF POWER SOURCES, 2016, 304 :384-401
[2]   Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells [J].
Andersson, Martin ;
Yuan, Jinliang ;
Sunden, Bengt .
APPLIED ENERGY, 2010, 87 (05) :1461-1476
[3]  
Bird R B., 2002, Transportphenomena
[4]   Modelling of SOEC-FT reactor: Pressure effects on methanation process [J].
Chen, Bin ;
Xu, Haoran ;
Ni, Meng .
APPLIED ENERGY, 2017, 185 :814-824
[5]   Modeling of mass and energy transfers in a high temperature membrane electrolyser [J].
Dumortier, M. ;
Lacroix, O. ;
Sanchez-Marcano, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (09) :4683-4690
[6]   Development of a Quasi 2-D Modeling of Tubular Solid-Oxide Fuel Cell for Real-Time Control [J].
Gao, Fei ;
Simoes, Marcelo Godoy ;
Blunier, Benjamin ;
Miraoui, Abdellatif .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2014, 29 (01) :9-19
[7]   Challenges in the electrochemical modelling of solid oxide fuel and electrolyser cells [J].
Garcia-Camprubi, M. ;
Izquierdo, S. ;
Fueyo, N. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 :701-718
[8]   Solid Oxide Fuel Cell Modeling [J].
Gebregergis, Abraham ;
Pillay, Pragasen ;
Bhattacharyya, Debangsu ;
Rengaswemy, Raghunathan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (01) :139-148
[9]   Current developments in reversible solid oxide fuel cells [J].
Gomez, Sergio Yesid ;
Hotza, Dachamir .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 61 :155-174
[10]   Mathematical modeling of solid oxide fuel cells: A review [J].
Hajimolana, S. Ahmad ;
Hussain, M. Azlan ;
Daud, W. M. Ashri Wan ;
Soroush, M. ;
Shamiri, A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (04) :1893-1917