Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride

被引:50
|
作者
Chang, Fei [1 ]
Li, Chenlu [1 ]
Luo, Jieru [1 ]
Xie, Yunchao [1 ]
Deng, Baoqing [1 ]
Hu, Xuefeng [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Environm & Architecture, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Porousg-C3N4; Nitric acid; Photocatalysis; Rhodamine B; Mechanisma; TEMPLATE-FREE SYNTHESIS; HYDROGEN EVOLUTION; QUANTUM DOTS; DOPED G-C3N4; WATER; DEGRADATION; NANOSHEETS; SEMICONDUCTOR; FABRICATION; GENERATION;
D O I
10.1016/j.apsusc.2015.08.124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a series of porous graphitic carbon nitride (g-C3N4) materials were fabricated through a direct pyrolysis of protonated melamine by nitric acid solution. These as-prepared porous samples were characterized by a collection of analytical techniques. It was found that a proper concentration of nitric acid solution involved facilitated to generate samples in tube-like morphology with numerous pores, identified with X-ray diffraction patterns, FT-IR spectra, SEM, TEM, and BET measurements. These g-C3N4 samples were subjected to photocatalytic degradation of dye Rhodamine B (RhB) in aqueous under visible-light irradiation. Under identical conditions, those porous g-C3N4 samples showed significantly improved catalytic performance in comparison with the sample prepared without the introduction of nitric acid. In particularly, the best candidate, sample M1:1, showed an apparent reaction rate nearly 6.2 times that of the unmodified counterpart. The enhancement of photocatalytic performance could be attributed to the favorable porous structure with the enlarged specific surface area and the suitable electronic structure as well. In addition, ESR measurements were conducted for the sake of proposing a photocatalytic degradation mechanism. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 277
页数:8
相关论文
共 50 条
  • [21] Red Phosphorus Nanodot-Decorated Polymeric Carbon Nitride Nanotubes for Visible-Light-Driven Photocatalytic Bacterial Inactivation
    Chen, Jingying
    Zhu, Yukun
    Yang, Xianfeng
    Ye, Wanneng
    Liu, Jiaxiu
    Butenko, Denys S.
    Lu, Ping
    Meng, Pingping
    Xu, Yan
    Yang, Dongjiang
    Zhang, Shuchao
    ACS APPLIED NANO MATERIALS, 2022, 5 (01) : 862 - 870
  • [22] EFFECT OF PYROLYSIS CONDITIONS ON THE PHYSICOCHEMICAL PROPERTIES OF GRAPHITIC CARBON NITRIDE FOR VISIBLE-LIGHT-DRIVEN PHOTOCATALYTIC DEGRADATION
    Kim, Jeong Hyun
    Ji, Myeongjun
    Ryu, Cheol-Hui
    Lee, Young-In
    ARCHIVES OF METALLURGY AND MATERIALS, 2020, 65 (03) : 1111 - 1116
  • [23] The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution
    Xue, Jiawei
    Fujitsuka, Mamoru
    Majima, Tetsuro
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (05) : 2318 - 2324
  • [24] Synergistic effect of cyano defects and CaCO3 in graphitic carbon nitride nanosheets for efficient visible-light-driven photocatalytic NO removal
    Li, Kaining
    Zhou, Weichuang
    Li, Xiaofang
    Li, Qin
    Carabineiro, Sonia A. C.
    Zhang, Sushu
    Fan, Jiajie
    Lv, Kangle
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 442
  • [25] Development of a metal-free black phosphorus/graphitic carbon nitride heterostructure for visible-light-driven degradation of indomethacin
    He, Dongyang
    Jin, Dexin
    Cheng, Fangyuan
    Zhang, Tingting
    Qu, Jiao
    Zhou, Yangjian
    Yuan, Xing
    Zhang, Ya-nan
    Peijnenburg, Willie J. G. M.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [26] Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbon nitride
    Mei, Shunkang
    Gao, Jianping
    Zhang, Ye
    Yang, Jiangbing
    Wu, Yongli
    Wang, Xiaoxue
    Zhao, Ruiru
    Zhai, Xiangang
    Hao, Chaoyue
    Li, Ruixia
    Yan, Jing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 506 : 58 - 65
  • [27] Nano-zirconia supported by graphitic carbon nitride for enhanced visible light photocatalytic activity
    Bi, Xiaojian
    Yu, Sirong
    Liu, Enyang
    Yin, Xiaoli
    Zhao, Yan
    Xiong, Wei
    RSC ADVANCES, 2020, 10 (01) : 524 - 532
  • [28] Enhanced Visible-Light-Driven Hydrogen Production of Carbon Nitride by Band Structure Tuning
    Wang, Hongmei
    Zhou, Wei
    Li, Peng
    Tan, Xin
    Liu, Yanyu
    Hu, Wenping
    Ye, Jinhua
    Yu, Tao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (30) : 17261 - 17267
  • [29] Facile Synthesis of Fluorine Doped Graphitic Carbon Nitride with Enhanced Visible Light Photocatalytic Activity
    Xu, Mengqiu
    Chai, Bo
    Yan, Juntao
    Wang, Haibo
    Ren, Zhandong
    Paik, Kyung-Wook
    NANO, 2016, 11 (12)
  • [30] Porous graphitic carbon nitride nanoplates obtained by a combined exfoliation strategy for enhanced visible light photocatalytic activity
    Liu, Wei
    Iwasa, Nobuhiro
    Fujita, Shinichiro
    Koizumi, Hitoshi
    Yamaguchi, Makoto
    Shimada, Toshihiro
    APPLIED SURFACE SCIENCE, 2020, 499