Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride

被引:50
|
作者
Chang, Fei [1 ]
Li, Chenlu [1 ]
Luo, Jieru [1 ]
Xie, Yunchao [1 ]
Deng, Baoqing [1 ]
Hu, Xuefeng [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Environm & Architecture, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Porousg-C3N4; Nitric acid; Photocatalysis; Rhodamine B; Mechanisma; TEMPLATE-FREE SYNTHESIS; HYDROGEN EVOLUTION; QUANTUM DOTS; DOPED G-C3N4; WATER; DEGRADATION; NANOSHEETS; SEMICONDUCTOR; FABRICATION; GENERATION;
D O I
10.1016/j.apsusc.2015.08.124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a series of porous graphitic carbon nitride (g-C3N4) materials were fabricated through a direct pyrolysis of protonated melamine by nitric acid solution. These as-prepared porous samples were characterized by a collection of analytical techniques. It was found that a proper concentration of nitric acid solution involved facilitated to generate samples in tube-like morphology with numerous pores, identified with X-ray diffraction patterns, FT-IR spectra, SEM, TEM, and BET measurements. These g-C3N4 samples were subjected to photocatalytic degradation of dye Rhodamine B (RhB) in aqueous under visible-light irradiation. Under identical conditions, those porous g-C3N4 samples showed significantly improved catalytic performance in comparison with the sample prepared without the introduction of nitric acid. In particularly, the best candidate, sample M1:1, showed an apparent reaction rate nearly 6.2 times that of the unmodified counterpart. The enhancement of photocatalytic performance could be attributed to the favorable porous structure with the enlarged specific surface area and the suitable electronic structure as well. In addition, ESR measurements were conducted for the sake of proposing a photocatalytic degradation mechanism. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 277
页数:8
相关论文
共 50 条
  • [1] Silver nanoparticles/graphitic carbon nitride nanosheets for improved visible-light-driven photocatalytic performance
    Ye, Mao
    Wang, Rong
    Shao, Yinhua
    Tian, Cancan
    Zheng, Zejun
    Gu, Xiangyu
    Wei, Wei
    Wei, Ang
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2018, 351 : 145 - 153
  • [2] Graphitic carbon nitride nanosheets anchored with BiOBr and carbon dots: Exceptional visible-light-driven photocatalytic performances for oxidation and reduction reactions
    Asadzadeh-Khaneghah, Soheila
    Habibi-Yangjeh, Aziz
    Nakata, Kazuya
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 530 : 642 - 657
  • [3] Surface hydroxylation of graphitic carbon nitride: Enhanced visible light photocatalytic activity
    Zheng, Yu
    Zhang, Zisheng
    Li, Chunhu
    Proulx, Scott
    MATERIALS RESEARCH BULLETIN, 2016, 84 : 46 - 56
  • [4] Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance
    You, Ran
    Dou, Hailong
    Chen, Lu
    Zheng, Shaohui
    Zhang, Yongping
    RSC ADVANCES, 2017, 7 (26): : 15842 - 15850
  • [5] Constructing Highly Uniform Onion-Ring-like Graphitic Carbon Nitride for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution
    Cui, Lifeng
    Song, Jialing
    McGuire, Allister F.
    Kang, Shifei
    Fang, Xueyou
    Wang, Junjie
    Yin, Chaochuang
    Li, Xi
    Wang, Yangang
    Cui, Bianxiao
    ACS NANO, 2018, 12 (06) : 5551 - 5558
  • [6] Facile fabrication of novel porous graphitic carbon nitride/copper sulfide nanocomposites with enhanced visible light driven photocatalytic performance
    Chen, Xi
    Li, Huankun
    Wu, Yuxin
    Wu, Hanshuo
    Wu, Laidi
    Tan, Pengfei
    Pan, Jun
    Xiong, Xiang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 476 : 132 - 143
  • [7] Ozone treatment of graphitic carbon nitride with enhanced photocatalytic activity under visible light irradiation
    Liu, Xiaoling
    Ji, Hongyun
    Wang, Jiali
    Xiao, Jinlan
    Yuan, Hongyan
    Xiao, Dan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 505 : 919 - 928
  • [8] Graphitic carbon nitride nanosheets coupled with carbon dots and BiOI nanoparticles: Boosting visible-light-driven photocatalytic activity
    Asadzadeh-Khaneghah, Soheila
    Habibi-Yangjeh, Aziz
    Seifzadeh, Davod
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 87 : 98 - 111
  • [9] Hydrothermal synthesis of InVO4/Graphitic carbon nitride heterojunctions and excellent visible-light-driven photocatalytic performance for rhodamine B
    Shi, Weilong
    Guo, Feng
    Chen, Jibin
    Che, Guangbo
    Lin, Xue
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 612 : 143 - 148
  • [10] Precisely tunable thickness of graphitic carbon nitride nanosheets for visible-light-driven photocatalytic hydrogen evolution
    Hong, Yuanzhi
    Li, Changsheng
    Li, Di
    Fang, Zhenyuan
    Luo, Bifu
    Yan, Xu
    Shen, Hongqiang
    Mao, Baodong
    Shi, Weidong
    NANOSCALE, 2017, 9 (37) : 14103 - 14110