Cytosolic alkalisation and nitric oxide production in UVB-induced stomatal closure in Arabidopsis thaliana

被引:2
|
作者
Ge, Xiao-Min [1 ]
Zhu, Yan [1 ]
He, Jun-Min [1 ]
机构
[1] Shaanxi Normal Univ, Sch Life Sci, Xian 710062, Peoples R China
基金
美国国家科学基金会;
关键词
cytosolic pH; nitric oxide; UVB irradiation; ULTRAVIOLET-B RADIATION; GUARD-CELLS; ABSCISIC-ACID; HYDROGEN-PEROXIDE; VICIA-FABA; CULTURED-CELLS; PH; PLANTS; PROTEIN; PHOTORECEPTOR;
D O I
10.1071/FP13222
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The role and the interrelationship of cytosolic alkalisation and nitric oxide (NO) in UVB-induced stomatal closure were investigated in Arabidopsis thaliana (L.) Heynh. by stomatal bioassay and laser-scanning confocal microscopy. In response to 0.5Wm(-2) UVB radiation, the rise of NO levels in guard cells occurred after cytosolic alkalisation but preceded stomatal closure. UVB-induced NO production and stomatal closure were both inhibited by NO scavengers, nitrate reductase (NR) inhibitors and a Nia2-5/Nia1-2 mutation, and also by butyrate. Methylamine induced NO generation and stomatal closure in the wild-type but not in the Nia2-5/Nia1-2 mutant or wild-type plants pretreated with NO scavengers or NR inhibitors while enhancing the cytosolic pH in guard cells under light. NO generation in wild-type guard cells was largely induced after 60min of UVB radiation. The defect in UVB-induced NO generation in Nia2-5/Nia1-2 guard cells did not affect the changes of guard cell pH before 60min of UVB radiation, but prevented the UVB-induced cytosolic alkalisation after 60min of radiation. Meanwhile, exogenous NO caused a marked rise of cytosolic pH in guard cells. Together, our results show that cytosolic alkalisation and NR-dependent NO production coordinately function in UVB signalling in A. thaliana guard cells.
引用
收藏
页码:803 / 811
页数:9
相关论文
共 50 条
  • [1] Ethylene-induced nitric oxide production and stomatal closure in Arabidopsis thaliana depending on changes in cytosolic pH
    Liu Jing
    Liu GuoHua
    Hou LiXia
    Liu Xin
    CHINESE SCIENCE BULLETIN, 2010, 55 (22): : 2403 - 2409
  • [2] Ethylene-induced nitric oxide production and stomatal closure in Arabidopsis thaliana depending on changes in cytosolic pH
    LIU Jing LIU GuoHua HOU LiXia LIU Xin Life Sciences College Qingdao Agricultural University Qingdao China
    Chinese Science Bulletin, 2010, 55 (22) : 2406 - 2412
  • [4] Lipoxygenase 2 functions in exogenous nitric oxide-induced stomatal closure in Arabidopsis thaliana
    Sun, Yanfeng
    Lv, Dong
    Wang, Wei
    Xu, Wei
    Wang, Li
    Miao, Chen
    Lin, Hong-Hui
    FUNCTIONAL PLANT BIOLOGY, 2015, 42 (11) : 1019 - 1025
  • [5] Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana
    LIU Jing1
    2 State Key Laboratory of Plant Physiology and Biochemistry
    Science Bulletin, 2011, (33) : 3547 - 3553
  • [6] Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana
    Liu Jing
    Hou LiXia
    Liu GuoHua
    Liu Xin
    Wang XueChen
    CHINESE SCIENCE BULLETIN, 2011, 56 (33): : 3547 - 3553
  • [7] Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana
    LIU Jing HOU LiXia LIU GuoHua LIU Xin WANG XueChen Key Laboratory of Plant Biotechnology in Universities of Shandong Life Sciences College Qingdao Agricultural University Qingdao China State Key Laboratory of Plant Physiology and Biochemistry College of Biological Sciences China Agricultural University Beijing China
    Chinese Science Bulletin, 2011, 56 (33) : 3547 - 3553
  • [8] Rearrangements of microtubule cytoskeleton in stomatal closure of Arabidopsis induced by nitric oxide
    Zhang YongMei
    Wu ZhongYi
    Wang XueChen
    Yu Rong
    CHINESE SCIENCE BULLETIN, 2008, 53 (06): : 848 - 852
  • [9] Rearrangements of microtubule cytoskeleton in stomatal closure of Arabidopsis induced by nitric oxide
    ZHANG YongMei1
    2Beijing Agro-Biotechnology Research Center
    3State Key Laboratory of Plant Physiology and Biochemistry
    Chinese Science Bulletin, 2008, (06) : 848 - 852
  • [10] Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid
    Gonugunta, Vijay K.
    Srivastava, Nupur
    Puli, Mallikarjuna R.
    Raghavendra, Agepati S.
    PLANT CELL AND ENVIRONMENT, 2008, 31 (11): : 1717 - 1724