Sequential Cascade Electrocatalytic Conversion of Carbon Dioxide to C-C Coupled Products

被引:64
作者
Gurudayal [1 ,2 ,4 ]
Perone, David [1 ,3 ,4 ,6 ]
Malani, Saurabh [5 ]
Lum, Yanwei [1 ,3 ,4 ]
Haussener, Sophia [6 ]
Ager, Joel W. [1 ,3 ,4 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Chem Engn & Biochem, Berkeley, CA 94720 USA
[6] Ecole Polytech Fed Lausanne, Dept Mech Engn, CH-1015 Lausanne, Switzerland
基金
美国国家科学基金会; 瑞士国家科学基金会; 美国国家卫生研究院;
关键词
cascade catalysis; sequential catalysis; electrocatalysis; CO2; reduction; renewable fuels; ELECTROCHEMICAL CO2 REDUCTION; SELECTIVE CONVERSION; CATALYSIS; ELECTROREDUCTION; MONOXIDE; WATER; SUPERSATURATION; HYDROGENATION; PERFORMANCE; ELECTRODE;
D O I
10.1021/acsaem.9b00791
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cascade catalytic processes perform multistep chemical transformations without isolating the intermediates. Here, we demonstrate a sequential cascade pathway to convert CO2 to C2+ hydrocarbons and oxygenates in a two-step electrocatalytic process using CO as the intermediate. CO2 to CO conversion is performed by using Ag, and further conversion of CO to C-C coupled products is performed with Cu. Temporal separation between the two reaction steps is accomplished by situating the Ag electrode upstream of the Cu electrode in a continuous flow reactor. Convection-diffusion simulations and experimental evaluation of the electrodes individually are performed to identify optimal conditions. With the upstream Ag electrode poised at -1 V versus reversible hydrogen electrode in a flow of CO2-saturated water in aqueous carbonate buffer, over 80% of the CO can be converted on the downstream Cu electrode. When the Ag electrode is on, a supersaturation of CO is achieved near the Cu electrode, which leads to a relative increase in the formation rate of C-2 and C-3 oxygenates as compared to ethylene.
引用
收藏
页码:4551 / 4559
页数:17
相关论文
共 54 条
[1]   SUPERSATURATION LIMIT FOR HOMOGENEOUS NUCLEATION OF OXYGEN BUBBLES IN WATER AT ELEVATED PRESSURE - SUPERHENRY-LAW [J].
BOWERS, PG ;
HOFSTETTER, C ;
LETTER, CR ;
TOOMEY, RT .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (23) :9632-9637
[2]   Concepts of nature in organic synthesis: Cascade catalysis and multistep conversions in concert [J].
Bruggink, A ;
Schoevaart, R ;
Kieboom, T .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2003, 7 (05) :622-640
[3]   Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) :7282-7285
[4]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[5]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[6]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[7]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[8]   Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy [J].
Graves, Christopher ;
Ebbesen, Sune D. ;
Mogensen, Mogens ;
Lackner, Klaus S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :1-23
[9]  
Grondal C, 2010, NAT CHEM, V2, P167, DOI [10.1038/NCHEM.539, 10.1038/nchem.539]
[10]   Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions [J].
Gupta, N ;
Gattrell, M ;
MacDougall, B .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2006, 36 (02) :161-172