Lessons from Enzyme Kinetics Reveal Specificity Principles for RNA-Guided Nucleases in RNA Interference and CRISPR-Based Genome Editing

被引:59
作者
Bisaria, Namita [1 ,5 ]
Jarmoskaite, Inga [1 ]
Herschlag, Daniel [1 ,2 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] Stanford Univ, Stanford ChEM H, Stanford, CA 94305 USA
[5] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
基金
美国国家卫生研究院;
关键词
OFF-TARGET CLEAVAGE; NUCLEOTIDE MISMATCHES; BINDING-PROPERTIES; MUTANT HUNTINGTIN; ENDONUCLEASE CAS9; HUMAN ARGONAUTE2; HYBRID DUPLEXES; DNA RECOGNITION; MODIFIED SIRNA; INDUCED FIT;
D O I
10.1016/j.cels.2016.12.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-guided nucleases (RGNs) provide sequence-specific gene regulation through base-pairing interactions between a small RNA guide and target RNA or DNA. RGN systems, which include CRISPR-Cas9 and RNA interference (RNAi), hold tremendous promise as programmable tools for engineering and therapeutic purposes. However, pervasive targeting of sequences that closely resemble the intended target has remained a major challenge, limiting the reliability and interpretation of RGN activity and the range of possible applications. Efforts to reduce off-target activity and enhance RGN specificity have led to a collection of empirically derived rules, which often paradoxically include decreased binding affinity of the RNA-guided nuclease to its target. We consider the kinetics of these reactions and show that basic kinetic properties can explain the specificities observed in the literature and the changes in these specificities in engineered systems. The kinetic models described provide a foundation for understanding RGN targeting and a necessary conceptual framework for their rational engineering.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 76 条
[1]   Molecular basis for target RNA recognition and cleavage by human RISC [J].
Ameres, Stefan Ludwig ;
Martinez, Javier ;
Schroeder, Renee .
CELL, 2007, 130 (01) :101-112
[2]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[3]   A note on the kinetics of enzyme action. [J].
Briggs, GE ;
Haldane, JBS .
BIOCHEMICAL JOURNAL, 1925, 19 (02) :338-339
[4]   Staying on target with CRISPR-Cas [J].
Carroll, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (09) :807-809
[5]   A Dynamic Search Process Underlies MicroRNA Targeting [J].
Chandradoss, Stanley D. ;
Schirle, Nicole T. ;
Szczepaniak, Malwina ;
MacRae, Ian J. ;
Joo, Chirlmin .
CELL, 2015, 162 (01) :96-107
[6]   Analysis of siRNA specificity on targets with double-nucleotide mismatches [J].
Dahlgren, Cecilia ;
Zhang, Hong-Yan ;
Du, Quan ;
Grahn, Maria ;
Norstedt, Gunnar ;
Wahlestedt, Claes ;
Liang, Zicai .
NUCLEIC ACIDS RESEARCH, 2008, 36 (09)
[7]   Highly Complementary Target RNAs Promote Release of Guide RNAs from Human Argonaute2 [J].
De, Nabanita ;
Young, Lisa ;
Lau, Pick-Wei ;
Meisner, Nicole-Claudia ;
Morrissey, David V. ;
MacRae, Ian J. .
MOLECULAR CELL, 2013, 50 (03) :344-355
[8]   Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 [J].
Doench, John G. ;
Fusi, Nicolo ;
Sullender, Meagan ;
Hegde, Mudra ;
Vaimberg, Emma W. ;
Donovan, Katherine F. ;
Smith, Ian ;
Tothova, Zuzana ;
Wilen, Craig ;
Orchard, Robert ;
Virgin, Herbert W. ;
Listgarten, Jennifer ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2016, 34 (02) :184-+
[9]   Modified siRNA Structure With a Single Nucleotide Bulge Overcomes Conventional siRNA-mediated Off-target Silencing [J].
Dua, Pooja ;
Yoo, Jae Wook ;
Kim, Soyoun ;
Lee, Dong-ki .
MOLECULAR THERAPY, 2011, 19 (09) :1676-1687
[10]  
Elkayam E, 2012, CELL, V150, P100, DOI 10.1016/j.cell.2012.05.017