Determinant preserving maps on matrix algebras

被引:45
作者
Dolinar, G
Semrl, P
机构
[1] Univ Ljubljana, Dept Math, SI-1000 Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Elect Engn, SI-1000 Ljubljana, Slovenia
关键词
determinant; preserver;
D O I
10.1016/S0024-3795(01)00578-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M, be the algebra of all n x n complex matrices. If Phi:M-n-->M-n is a surjective mapping satisfying det(A+lambdaB)=det(phi(A)+lambdaphi(B)). A,B is an element of M-n, lambda is an element of C, then either phi is of the form phi(A)=MAN. A is an element of M-n, or phi is of the form phi(A)=MA(t)N, A is an element of M-n, where M, N is an element of M are nonsingular matrices with det(MN)=1. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:189 / 192
页数:4
相关论文
共 4 条
[1]  
Frobenius G., 1897, SITZUNGSBER PREUSS A, P994
[2]   A CHARACTERIZATION OF MAXIMAL IDEALS [J].
GLEASON, AM .
JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 :171-&
[3]   A CHARACTERIZATION OF MAXIMAL IDEALS IN COMMUTATIVE BANACH ALGEBRAS [J].
KAHANE, JP ;
ZELAZKO, W .
STUDIA MATHEMATICA, 1968, 29 (03) :339-&
[4]   A CHARACTERIZATION OF MULTIPLICATIVE LINEAR FUNCTIONALS IN BANACH ALGEBRAS [J].
KOWALSKI, S ;
SLODKOWSKI, Z .
STUDIA MATHEMATICA, 1980, 67 (03) :215-223