A Note on the Eigensystem of the Covariance Matrix of Dichotomous Guttman Items

被引:2
作者
Davis-Stober, Clintin P. [1 ]
Doignon, Jean-Paul [2 ]
Suck, Reinhard [3 ]
机构
[1] Univ Missouri, Dept Psychol Sci, Columbia, MO 65211 USA
[2] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
[3] Univ Osnabruck, Osnabruck, Germany
基金
美国国家科学基金会;
关键词
Guttman scale; dichotomous items; Rasch model; principal component analysis; eigenvalues; eigenvectors; TOEPLITZ MATRICES; EIGENVALUES; INVERSES;
D O I
10.3389/fpsyg.2015.01767
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
We consider the covariance matrix for dichotomous Guttman items under a set of uniformity conditions, and obtain closed form expressions for the eigenvalues and eigenvectors of the matrix. In particular, we describe the eigenvalues and eigenvectors of the matrix in terms of trigonometric functions of the number of items. Our results parallel those of Zwick (1987) for the correlation matrix under the same uniformity conditions. We provide an explanation for certain properties of principal components under Guttman scalability which have been first reported by Guttman (1950).
引用
收藏
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 2007, J STAT SOFTW, DOI 10.18637/jss.v020.i06
[2]   Inverses, determinants, eigenvalues, and eigenvectors of real symmetric Toeplitz matrices with linearly increasing entries [J].
Buenger, F. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 :595-619
[3]  
Elliott J. F., 1953, THESIS
[4]  
Gregory R. T., 1969, COLLECTION MATRICES
[5]  
GUTTMAN L, 1950, MEASUREMENT PREDICTI, P312
[6]  
Lord F. M., 1968, Statistical theories of mental test scores
[7]   AN ANALYSIS AND SYNTHESIS OF MULTIPLE CORRESPONDENCE-ANALYSIS, OPTIMAL-SCALING, DUAL SCALING, HOMOGENEITY ANALYSIS AND OTHER METHODS FOR QUANTIFYING CATEGORICAL MULTIVARIATE DATA [J].
TENENHAUS, M ;
YOUNG, FW .
PSYCHOMETRIKA, 1985, 50 (01) :91-119
[8]  
Tuma N. B., 1985, JOSSEY BASS SOCIAL B, P33
[9]   Mokken scale analysis: Between the Guttman scale and parametric item response theory [J].
van Schuur, WH .
POLITICAL ANALYSIS, 2003, 11 (02) :139-163
[10]   Explicit eigenvalues and inverses of tridiagonal Toeplitz matrices with four perturbed corners [J].
Yueh, Wen-Chyuan ;
Cheng, Sui Sun .
ANZIAM JOURNAL, 2008, 49 (03) :361-387