Nanomaterials-based vaccines to target intracellular bacterial pathogens

被引:1
作者
Files, Megan A. [1 ,2 ,3 ]
Kristjansson, Kadin M. [4 ,5 ]
Rudra, Jai S. [5 ]
Endsley, Janice J. [1 ]
机构
[1] Dept Microbiol & Immunol, Galveston, TX 77555 USA
[2] Univ Texas Med Branch, Inst Translat Sci, Galveston, TX USA
[3] Sch Med, Dept Med, Seattle, WA USA
[4] Smith Coll, Dept Chem, Northampton MA, Northampton, MA USA
[5] Washington Univ St Louis, McKelvey Sch Engn, Dept Biomed Engn, St Louis, MO 63130 USA
关键词
vaccines; nanomaterials; peptide nanofibers; intracellular bacterial pathogens; Mycobacterium tuberculosis; IRON-OXIDE NANOPARTICLES; PEPTIDE NANOFIBERS; BRUCELLA-MELITENSIS; ANTIBODY-RESPONSES; IMMUNE-RESPONSES; IFN-GAMMA; ANTIGEN; PROTECTION; INFECTION; ADJUVANT;
D O I
10.3389/fmicb.2022.1040105
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Development of novel immunization approaches to combat a growing list of emerging and ancient infectious agents is a global health priority. Intensive efforts over the last several decades have identified alternative approaches to improve upon traditional vaccines that are based on live, attenuated agents, or formulations of inactivated agents with adjuvants. Rapid advances in RNA-based and other delivery systems for immunization have recently revolutionized the potential to protect populations from viral pathogens, such as SARS-CoV-2. Similar efforts to combat bacterial pathogens, especially species with an intracellular niche, have lagged significantly. In the past decade, advances in nanotechnology have yielded a variety of new antigen/adjuvant carrier systems for use in vaccine development against infectious viruses and bacteria. The tunable properties of nanomaterial-based vaccines allow for balancing immunogenicity and safety which is a key hurdle in traditional antigen and adjuvant formulations. In this review, we discuss several novel nanoparticle-based vaccine platforms that show promise for use against intracellular bacteria as demonstrated by the feasibility of construction, enhanced antigen presentation, induction of cell mediated and humoral immune responses, and improved survival outcomes in in vivo models.
引用
收藏
页数:13
相关论文
共 82 条
[1]   B cells and antibodies in the defense against Mycobacterium tuberculosis infection [J].
Achkar, Jacqueline M. ;
Chan, John ;
Casadevall, Arturo .
IMMUNOLOGICAL REVIEWS, 2015, 264 (01) :167-181
[2]   Vaccines against cholera, typhoid fever and shigellosis for developing countries [J].
Acosta, CJ ;
Galindo, CM ;
Deen, JL ;
Ochiai, RL ;
Lee, HJ ;
von Seidlein, L ;
Carbis, R ;
Clemens, JD .
EXPERT OPINION ON BIOLOGICAL THERAPY, 2004, 4 (12) :1939-1951
[3]   IFN-γ Stimulates Autophagy-Mediated Clearance of Burkholderia cenocepacia in Human Cystic Fibrosis Macrophages [J].
Assani, Kaivon ;
Tazi, Mia F. ;
Amer, Amal O. ;
Kopp, Benjamin T. .
PLOS ONE, 2014, 9 (05)
[4]   Induction of Functional Specific Antibodies, IgG-Secreting Plasmablasts and Memory B Cells Following BCG Vaccination [J].
Bitencourt, Julia ;
Peralta-Alvarez, Marco Polo ;
Wilkie, Morven ;
Jacobs, Ashley ;
Wright, Daniel ;
Salman Almujri, Salem ;
Li, Shuailin ;
Harris, Stephanie A. ;
Smith, Steven G. ;
Elias, Sean C. ;
White, Andrew D. ;
Satti, Iman ;
Sharpe, Sally S. ;
O'Shea, Matthew K. ;
McShane, Helen ;
Tanner, Rachel .
FRONTIERS IN IMMUNOLOGY, 2022, 12
[5]   GNP-GAPDH1-22 nanovaccines prevent neonatal listeriosis by blocking microglial apoptosis and bacterial dissemination [J].
Calderon-Gonzalez, Ricardo ;
Frande-Cabanes, Elisabet ;
Teran-Navarro, Hector ;
Marimon, Jose Maria ;
Freire, Javier ;
Salcines-Cuevas, David ;
Carmen Farinas, M. ;
Gonzalez-Rico, Claudia ;
Marradi, Marco ;
Garcia, Isabel ;
Alkorta-Gurrutxaga, Mirian ;
Nicolas-Gomez, Aida San ;
Castaneda-Sampedro, Ana ;
Yanez-Diaz, Sonsoles ;
Penades, Soledad ;
Punzon, Carmen ;
Gomez-Roman, Javier ;
Rivera, Fernando ;
Fresno, Manuel ;
Alvarez-Dominguez, Carmen .
ONCOTARGET, 2017, 8 (33) :53916-53934
[6]   Pregnancy Vaccination with Gold Glyco-Nanoparticles Carrying Listeria monocytogenes Peptides Protects against Listeriosis and Brain- and Cutaneous-Associated Morbidities [J].
Calderon-Gonzalez, Ricardo ;
Teran-Navarro, Hector ;
Frande-Cabanes, Elisabet ;
Ferrandez-Fernandez, Eva ;
Freire, Javier ;
Penades, Soledad ;
Marradi, Marco ;
Garcia, Isabel ;
Gomez-Roman, Javier ;
Yanez-Diaz, Sonsoles ;
Alvarez-Dominguez, Carmen .
NANOMATERIALS, 2016, 6 (08)
[7]   The intracellular pathogen concept [J].
Casadevall, Arturo ;
Fang, Ferric C. .
MOLECULAR MICROBIOLOGY, 2020, 113 (03) :541-545
[8]   Antibody-based vaccine strategies against intracellular pathogens [J].
Casadevall, Arturo .
CURRENT OPINION IN IMMUNOLOGY, 2018, 53 :74-80
[9]   New insights into the evasion of host innate immunity byMycobacterium tuberculosis [J].
Chai, Qiyao ;
Wang, Lin ;
Liu, Cui Hua ;
Ge, Baoxue .
CELLULAR & MOLECULAR IMMUNOLOGY, 2020, 17 (09) :901-913
[10]   Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules [J].
Chen, Mei-Chin ;
Mi, Fwu-Long ;
Liao, Zi-Xian ;
Hsiao, Chun-Wen ;
Sonaje, Kiran ;
Chung, Min-Fan ;
Hsu, Li-Wen ;
Sung, Hsing-Wen .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (06) :865-879