Quantitative modelling predicts the impact of DNA methylation on RNA polymerase II traffic

被引:33
|
作者
Cholewa-Waclaw, Justyna [1 ]
Shah, Ruth [1 ]
Webb, Shaun [1 ]
Chhatbar, Kashyap [1 ]
Ramsahoye, Bernard [2 ]
Pusch, Oliver [3 ]
Yu, Miao [4 ]
Greulich, Philip [5 ,6 ]
Waclaw, Bartlomiej [7 ]
Bird, Adrian P. [1 ]
机构
[1] Univ Edinburgh, Wellcome Ctr Cell Biol, Edinburgh EH9 3BF, Midlothian, Scotland
[2] Univ Edinburgh, Inst Genet & Mol Med, Western Gen Hosp Campus, Edinburgh EH4 2XU, Midlothian, Scotland
[3] Med Univ Vienna, Ctr Anat & Cell Biol, A-1090 Vienna, Austria
[4] Ludwig Inst Canc Res, San Diego Branch, La Jolla, CA 92093 USA
[5] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[6] Univ Southampton, Inst Life Sci, Southampton SO17 1BJ, Hants, England
[7] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
MeCP2; gene regulation; mathematical modelling; DNA methylation; RETT-SYNDROME; CHROMOSOMAL-PROTEIN; MECP2; TRANSCRIPTION; MUTATIONS; CHROMATIN; REPRESSION; DYNAMICS; SEQUENCE; SEQ;
D O I
10.1073/pnas.1903549116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patterns of gene expression are primarily determined by proteins that locally enhance or repress transcription. While many transcription factors target a restricted number of genes, others appear to modulate transcription levels globally. An example is MeCP2, an abundant methylated-DNA binding protein that is mutated in the neurological disorder Rett syndrome. Despite much research, the molecular mechanism by which MeCP2 regulates gene expression is not fully resolved. Here, we integrate quantitative, multidimensional experimental analysis and mathematical modeling to indicate that MeCP2 is a global transcriptional regulator whose binding to DNA creates "slow sites" in gene bodies. We hypothesize that waves of slowed-down RNA polymerase II formed behind these sites travel backward and indirectly affect initiation, reminiscent of defect-induced shockwaves in nonequilibrium physics transport models. This mechanism differs from conventional gene-regulation mechanisms, which often involve direct modulation of transcription initiation. Our findings point to a genome-wide function of DNA methylation that may account for the reversibility of Rett syndrome in mice. Moreover, our combined theoretical and experimental approach provides a general method for understanding how global gene-expression patterns are choreographed.
引用
收藏
页码:14995 / 15000
页数:6
相关论文
共 50 条
  • [41] A New Insight into MYC Action: Control of RNA Polymerase II Methylation and Transcription Termination
    Scagnoli, Fiorella
    Palma, Alessandro
    Favia, Annarita
    Scuoppo, Claudio
    Illi, Barbara
    Nasi, Sergio
    BIOMEDICINES, 2023, 11 (02)
  • [42] PHF8 Targets Histone Methylation and RNA Polymerase II To Activate Transcription
    Fortschegger, Klaus
    de Graaf, Petra
    Outchkourov, Nikolay S.
    van Schaik, Frederik M. A.
    Timmers, H. T. Marc
    Shiekhattar, Ramin
    MOLECULAR AND CELLULAR BIOLOGY, 2010, 30 (13) : 3286 - 3298
  • [43] Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast
    Xiao, TJ
    Hall, H
    Kizer, KO
    Shibata, Y
    Hall, MC
    Borchers, CH
    Strahl, BD
    GENES & DEVELOPMENT, 2003, 17 (05) : 654 - 663
  • [44] METHYLATION AND CAPPING OF RNA POLYMERASE-II PRIMARY TRANSCRIPTS BY HELA NUCLEAR HOMOGENATES
    GRONER, Y
    GILBOA, E
    AVIV, H
    BIOCHEMISTRY, 1978, 17 (06) : 977 - 982
  • [45] Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II
    Stiller, JW
    Duffield, ECS
    Hall, BD
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) : 11769 - 11774
  • [46] RNA polymerase II associates with active genes during DNA replication
    Tyler K. Fenstermaker
    Svetlana Petruk
    Sina K. Kovermann
    Hugh W. Brock
    Alexander Mazo
    Nature, 2023, 620 : 426 - 433
  • [47] The transformation of the DNA template in RNA polymerase II transcription: a historical perspective
    James T. Kadonaga
    Nature Structural & Molecular Biology, 2019, 26 : 766 - 770
  • [48] RNA polymerase II promotes the organization of chromatin following DNA replication
    Bandau, Susanne
    Alvarez, Vanesa
    Jiang, Hao
    Graff, Sarah
    Sundaramoorthy, Ramasubramanian
    Gierlinski, Marek
    Toman, Matt
    Owen-Hughes, Tom
    Sidoli, Simone
    Lamond, Angus
    Alabert, Constance
    EMBO REPORTS, 2024, 25 (03) : 1387 - 1414
  • [49] Structural features of DNA that determine RNA polymerase II core promoter
    Ilicheva, Irina A.
    Khodikov, Mingian V.
    Poptsova, Maria S.
    Nechipurenko, Dmitry Yu.
    Nechipurenko, Yury D.
    Grokhovsky, Sergei L.
    BMC GENOMICS, 2016, 17
  • [50] RNA Polymerase II CTD-Associated DNA Repair and Recombination
    Winsor, Tiffany
    Bennett, Craig
    Greenleaf, Arno
    FASEB JOURNAL, 2011, 25