Generation of local symmetry-preserving operations on polyhedra

被引:2
作者
Goetschalckx, Pieter [1 ]
Coolsaet, Kris [1 ]
Van Cleemput, Nico [1 ]
机构
[1] Univ Ghent, Krijgslaan 281-S9, B-9000 Ghent, Belgium
关键词
Graph theory; polyhedra; symmetry; chamber systems;
D O I
10.26493/1855-3974.1931.9cf
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new practical and more general definition of local symmetry-preserving operations on polyhedra. These can be applied to arbitrary embedded graphs and result in embedded graphs with the same or higher symmetry. With some additional properties we can restrict the connectivity, e.g. when we only want to consider polyhedra. Using some base structures and a list of 10 extensions, we can generate all possible local symmetry-preserving operations isomorph-free.
引用
收藏
页码:223 / 239
页数:17
相关论文
共 12 条
[1]  
[Anonymous], 2008, The Symmetries of Things
[2]  
Bokal D., 2022, J GRAPH THEOR, DOI [10.1002/jgt.22819, DOI 10.1002/JGT.22819]
[3]  
Brinkmann G, 2007, MATCH-COMMUN MATH CO, V58, P323
[4]   Comparing the constructions of Goldberg, Fuller, Caspar, Klug and Coxeter, and a general approach to local symmetry-preserving operations [J].
Brinkmann, Gunnar ;
Goetschalckx, Pieter ;
Schein, Stan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2206)
[5]   PHYSICAL PRINCIPLES IN CONSTRUCTION OF REGULAR VIRUSES [J].
CASPAR, DLD ;
KLUG, A .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1962, 27 :1-&
[6]  
Coxeter H., 1971, SPECTRUM MATH, P98
[7]  
DRESS AWM, 1987, GEOMETRIAE DEDICATA, V24, P295
[8]  
Goetschalckx P., 2019, DECOGEN
[9]  
Goldberg M., 1937, Tohoku Math. J., V43, P104
[10]  
Gruner T., 1997, DIMACS SERIES DISCRE, V28, P113, DOI [10.1090/dimacs/028/09, DOI 10.1090/DIMACS/028/09]