FE thermo-mechanical simulation of welding residual stresses and distortion in Ti-containing TWIP steel through GTAW process

被引:24
作者
Garcia-Garcia, V. [1 ,2 ]
Mejia, I. [1 ]
Reyes-Calderon, F. [2 ]
Benito, J. A. [3 ]
Cabrera, J. M. [1 ]
机构
[1] Univ Michoacana, Inst Invest Met & Mat, Edificio U-3,Ciudad Univ, Morelia 58030, Michoacan, Mexico
[2] Tecnol Nacl Mexico, Dept Met Mecan, Inst Tecnol Morelia, Posgrad Metal,Doctorado Ciencias Ingn, Av Tecnol 1500, Morelia 58120, Michoacan, Mexico
[3] Univ Politecn Cataluna, Dept Ciencia & Ingn Mat, EEBE, C Eduard Maristany 10-14, Barcelona 08019, Spain
关键词
TWIP-Ti steel; Welding; Finite element simulation; Residual stress; Hardening model; X-ray diffraction; AUSTENITIC STAINLESS-STEEL; DEFORMATION-BEHAVIOR; MICROSTRUCTURAL EVOLUTION; MECHANICAL-PROPERTIES; FRACTURE-BEHAVIOR; TEMPERATURE; PREDICTION; MODEL; JOINT; FEATURES;
D O I
10.1016/j.jmapro.2020.09.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of residual stresses can be beneficial or harmful depending on their magnitude, type and distribution. This research work applied the isotropic and kinematic hardening models with different strain rates (0.001-100 s(-1)) to simulate the non-linear mechanical behavior of Twinning Induced Plasticity (TWIP) steel microalloyed with titanium. A finite element (FE) thermo-mechanical model was employed to analyze the welding thermal cycle in the TWIP-Ti steel. The numerical prediction of residual stress was validated by X-ray diffraction (XRD) measurements in welding critical regions. Furthermore, a residual stress critical zone (SCZ) was defined as a function of the maximum tensile residual stress and hardness in the fusion zone (FZ) and heat affected zone (HAZ). The magnitude of residual stresses estimated in the SCZ was lower than the TWIP-Ti steel yield strength. The weld joint preparation and the mechanical constraint provided a control to mitigate both residual stress and distortion. Quantitatively, the results provided good weldability of the TWIP-Ti steel in higher plate thickness through the Gas Tungsten Arc Welding (GTAW) process at low heat input.
引用
收藏
页码:801 / 815
页数:15
相关论文
共 59 条
  • [1] Residual stresses in flux cored arc welding process in bead-on-plate specimens
    Aloraier, Abdulkareem S.
    Joshi, Suraj
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 534 : 13 - 21
  • [2] Finite element modeling of welding processes
    Anca, Andres
    Cardona, Alberto
    Risso, Jose
    Fachinotti, Victor D.
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (02) : 688 - 707
  • [3] [Anonymous], 2011, E384 ASTM INT, DOI [10.1520/E0384-11E01, DOI 10.1520/E0384-11E01]
  • [4] ANSYS Inc. ANSYS, 2018, MECH US GUID
  • [5] Global sensitivity analysis in welding simulations-What are the material data you really need?
    Asserin, Olivier
    Loredo, Alexandre
    Petelet, Matthieu
    Iooss, Bertrand
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2011, 47 (09) : 1004 - 1016
  • [6] Bergman TL., 2015, Fundamentals of heat and mass transfer, 2011
  • [7] A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes
    Brickstad, B
    Josefson, BL
    [J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 1998, 75 (01) : 11 - 25
  • [8] Numerical and experimental investigations on the residual stresses of the butt-welded joints
    Chang, PH
    Teng, TL
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2004, 29 (04) : 511 - 522
  • [9] Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels
    Chin, Kwang-Geun
    Kang, Chung-Yun
    Shin, Sang Yong
    Hong, Seokmin.
    Lee, Sunghak
    Kim, Hyoung Seop
    Kim, Kyung-hun
    Kim, Nack J.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (06): : 2922 - 2928
  • [10] Mechanical reliability of TWIP steel spot weldings
    Colombo, Tiago C. A.
    Rego, Ronnie R.
    Otubo, Jorge
    de Faria, Alfredo R.
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 266 : 662 - 674