Comparison of loss functions for estimating the scale parameter of log-normal distribution using non-informative priors

被引:3
作者
Khan, Akbar Ali [1 ]
Aslam, Muhammad [2 ]
Hussain, Zawar [1 ]
Tahir, Muhammad [3 ]
机构
[1] Quaid I Azam Univ, Dept Stat, Islamabad 44000, Pakistan
[2] Riphah Int Univ, Dept Basic Sci, Islamabad 44000, Pakistan
[3] Govt Coll Univ, Dept Stat, Faisalabad 38000, Pakistan
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2016年 / 45卷 / 06期
关键词
Prior distribution; Posterior distribution; Log-Normal distribution; Inverted Gamma distribution; BAYESIAN-ANALYSIS;
D O I
10.15672/HJMS.20159614094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The estimation of parameters of distributions is a core topic in the literature on Statistical methodology. Many Bayesian and classical approaches have been derived for estimating parameters. In this study, Bayesian estimation technique is adopted for the comparison of two non-informative priors and six loss functions to estimate the scale parameter of Log-Normal distribution assuming fixed values of location parameter. The main purpose of this study is to search for a suitable prior when no prior information is available and to look for an appropriate loss function for estimation of the scale parameter of Log-Normal distribution. Through simulation study, comparisons are made on the basis of the posterior variances, coefficients of skewness, ex-kurtosis and Bayes risks. The simulation results are verified through a real data set of lung cancer patients.
引用
收藏
页码:1831 / 1845
页数:15
相关论文
共 16 条
[1]   Bayesian Estimation of Log-Normal Means with Finite Quadratic Expected Loss [J].
Fabrizi, Enrico ;
Trivisano, Carlo .
BAYESIAN ANALYSIS, 2012, 7 (04) :975-996
[2]  
Finney DJ, 1941, J ROYAL STATISTICA S, V7, P155, DOI DOI 10.2307/2983663
[3]  
Kalbfleisch J.D., 2002, STAT ANAL FAILURE TI
[4]  
Khan H. M., 2006, J STAT THEORY APPL, V5, P141
[5]  
Limpert E, 2001, BIOSCIENCE, V51, P341, DOI 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO
[6]  
2
[7]   Bayesian analysis of a generalized lognormal distribution [J].
Martin, J. ;
Perez, C. J. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (04) :1377-1387
[8]   Approximating a sum of random variables with a lognormal [J].
Mehta, Neelesh B. ;
Wu, Jingxian ;
Molisch, Andreas F. ;
Zhang, Jin .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007, 6 (07) :2690-2699
[9]   Neuronal Variability during Handwriting: Lognormal Distribution [J].
Rupasov, Valery I. ;
Lebedev, Mikhail A. ;
Erlichman, Joseph S. ;
Linderman, Michael .
PLOS ONE, 2012, 7 (04)
[10]  
Saleem M., 2009, J APPL STAT SCI, V16, P105