Total {k}-domination;
Total domination;
Cartesian product;
TOTAL DOMINATION;
D O I:
10.1007/s10878-008-9144-2
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Let gamma({k})(t)(G) denote the total {k}-domination number of graph G, and let G square H denote the Cartesian product of graphs G and H. In this paper, we show that for any graphs G and H without isolated vertices, gamma({k})(t)(G)gamma({k})(t)(H) <= k(k + 1)gamma({k})(t)(G square H). As a corollary of this result, we have gamma(t)(G)gamma(t)(H) <= 2 gamma(t)(G square H) for all graphs G and H without isolated vertices, which is given by Pak Tung Ho (Util. Math., 2008, to appear) and first appeared as a conjecture proposed by Henning and Rall (Graph. Comb. 21:63-69, 2005).
机构:
Univ Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Bresar, Bostjan
Bujtas, Csilla
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pannonia, Fac Informat Technol, Veszprem, HungaryUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Bujtas, Csilla
Gologranc, Tanja
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Gologranc, Tanja
Klavzar, Sandi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Klavzar, Sandi
Kosmrlj, Gasper
论文数: 0引用数: 0
h-index: 0
机构:
Slovenia Abelium R&D, Inst Math Phys & Mech, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Kosmrlj, Gasper
Marc, Tilen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Marc, Tilen
Patkos, Balazs
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, HungaryUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Patkos, Balazs
Tuza, Zsolt
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pannonia, Fac Informat Technol, Veszprem, Hungary
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, HungaryUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
Tuza, Zsolt
Vizer, Mate
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, HungaryUniv Maribor, Fac Nat Sci & Math, Slovenia Inst Math Phys & Mech, Ljubljana, Slovenia
机构:
Hindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, IndiaHindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, India
Arulanand, S.
Rajan, R. Sundara
论文数: 0引用数: 0
h-index: 0
机构:
Hindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, IndiaHindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, India
Rajan, R. Sundara
Prabhu, S.
论文数: 0引用数: 0
h-index: 0
机构:
Rajalakshmi Engn Coll, Dept Math, Thandalam 602105, Tamil Nadu, IndiaHindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, India
Prabhu, S.
Stephen, Sudeep
论文数: 0引用数: 0
h-index: 0
机构:
Univ Auckland, Sch Comp Sci, Dept Math, Auckland 1010, New ZealandHindustan Inst Technol & Sci, Dept Math, Chennai 603103, Tamil Nadu, India