On the total {k}-domination number of Cartesian products of graphs

被引:17
|
作者
Li, Ning [1 ]
Hou, Xinmin [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
Total {k}-domination; Total domination; Cartesian product; TOTAL DOMINATION;
D O I
10.1007/s10878-008-9144-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let gamma({k})(t)(G) denote the total {k}-domination number of graph G, and let G square H denote the Cartesian product of graphs G and H. In this paper, we show that for any graphs G and H without isolated vertices, gamma({k})(t)(G)gamma({k})(t)(H) <= k(k + 1)gamma({k})(t)(G square H). As a corollary of this result, we have gamma(t)(G)gamma(t)(H) <= 2 gamma(t)(G square H) for all graphs G and H without isolated vertices, which is given by Pak Tung Ho (Util. Math., 2008, to appear) and first appeared as a conjecture proposed by Henning and Rall (Graph. Comb. 21:63-69, 2005).
引用
收藏
页码:173 / 178
页数:6
相关论文
共 50 条
  • [21] ON GRUNDY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS
    Bresar, Bostjan
    Bujtas, Csilla
    Gologranc, Tanja
    Klavzar, Sandi
    Kosmrlj, Gasper
    Marc, Tilen
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 225 - 247
  • [22] Certain domination numbers for Cartesian product of graphs
    Arulanand, S.
    Rajan, R. Sundara
    Prabhu, S.
    Stephen, Sudeep
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03) : 1045 - 1058
  • [23] k-tuple total domination in graphs
    Henning, Michael A.
    Kazemi, Adel P.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (09) : 1006 - 1011
  • [24] On a conjecture concerning total domination subdivision number in graphs
    Kosari, S.
    Shao, Z.
    Khoeilar, R.
    Karami, H.
    Sheikholeslami, S. M.
    Hao, G.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 154 - 157
  • [25] Secure total domination number in maximal outerplanar graphs
    Aita, Yasufumi
    Araki, Toru
    DISCRETE APPLIED MATHEMATICS, 2024, 353 : 65 - 70
  • [26] New Bounds on the Double Total Domination Number of Graphs
    A. Cabrera-Martínez
    F. A. Hernández-Mira
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 443 - 453
  • [27] New Bounds on the Double Total Domination Number of Graphs
    Cabrera-Martinez, A.
    Hernandez-Mira, F. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (01) : 443 - 453
  • [28] Total Roman Domination Number of Rooted Product Graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Carrion Garcia, Andres
    Hernandez Mira, Frank A.
    MATHEMATICS, 2020, 8 (10) : 1 - 13
  • [29] On total domination number of Cartesian product of directed cycles
    Zhuang, Wei
    Yang, Weihua
    Guo, Xiaofeng
    ARS COMBINATORIA, 2016, 124 : 41 - 48
  • [30] ON THE TOTAL SIGNED DOMINATION NUMBER OF THE CARTESIAN PRODUCT OF PATHS
    Gao, Hong
    Zhang, Qingfang
    Yang, Yuansheng
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 52 - 62