On the total {k}-domination number of Cartesian products of graphs

被引:17
|
作者
Li, Ning [1 ]
Hou, Xinmin [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
Total {k}-domination; Total domination; Cartesian product; TOTAL DOMINATION;
D O I
10.1007/s10878-008-9144-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let gamma({k})(t)(G) denote the total {k}-domination number of graph G, and let G square H denote the Cartesian product of graphs G and H. In this paper, we show that for any graphs G and H without isolated vertices, gamma({k})(t)(G)gamma({k})(t)(H) <= k(k + 1)gamma({k})(t)(G square H). As a corollary of this result, we have gamma(t)(G)gamma(t)(H) <= 2 gamma(t)(G square H) for all graphs G and H without isolated vertices, which is given by Pak Tung Ho (Util. Math., 2008, to appear) and first appeared as a conjecture proposed by Henning and Rall (Graph. Comb. 21:63-69, 2005).
引用
收藏
页码:173 / 178
页数:6
相关论文
共 50 条
  • [1] On the total {k}-domination number of Cartesian products of graphs
    Ning Li
    Xinmin Hou
    Journal of Combinatorial Optimization, 2009, 18 : 173 - 178
  • [2] On the Total Domination Number of Cartesian Products of Graphs
    Michael A. Henning
    Douglas F. Rall
    Graphs and Combinatorics, 2005, 21 : 63 - 69
  • [3] On the total domination number of Cartesian products of graphs
    Henning, MA
    Rall, DF
    GRAPHS AND COMBINATORICS, 2005, 21 (01) : 63 - 69
  • [4] On the {k}-domination number of Cartesian products of graphs
    Hou, Xinmin
    Lu, You
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3413 - 3419
  • [5] ON TOTAL DOMINATION IN THE CARTESIAN PRODUCT OF GRAPHS
    Bresar, Bostjan
    Hartinger, Tatiana Romina
    Kos, Tim
    Milanic, Martin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 963 - 976
  • [6] Double total domination number of Cartesian product of paths
    Li, Linyu
    Yue, Jun
    Zhang, Xia
    AIMS MATHEMATICS, 2023, 8 (04): : 9506 - 9519
  • [7] Total k-domination in Cartesian product of complete graphs
    Carballosa, Walter
    Wisby, Justin
    DISCRETE APPLIED MATHEMATICS, 2023, 337 : 25 - 41
  • [8] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [9] Total domination number of Cartesian products (vol 9, pg 35, 2004)
    Kuziak, Dorota
    Peterin, Iztok
    Yero, Ismael G.
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 195 - 200
  • [10] On the Total Outer k-Independent Domination Number of Graphs
    Cabrera-Martinez, Abel
    Carlos Hernandez-Gomez, Juan
    Parra-Inza, Ernesto
    Sigarreta Almira, Jose Maria
    MATHEMATICS, 2020, 8 (02)