High-intensity and low-divergence THz laser with 1D autofocusing symmetric Airy beams

被引:5
作者
Chen, Ji [1 ]
Gao, Liang [1 ]
Jin, Yuan [1 ]
Reno, John L. [2 ]
Kumar, Sushil [1 ]
机构
[1] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol, MS 1303, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
QUANTUM-CASCADE LASERS; RADIUS;
D O I
10.1364/OE.27.022877
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single-mode THz quantum-cascade lasers (QCLs) have been realized using a wide variety of techniques to obtain a combination of large power output, good beam quality with single-lobed beams, and low far-field divergence. Beam shaping using external components has not been previously exploited due to limited commercial availability of THz optical components and also the accompanying large loss from most THz optical materials. Here, we demonstrate that excellent beam characteristics could be obtained for a THz QCL by integration of a surface-emitting distributed-feedback (DFB) QCL with a simple lens within the vacuum chamber of a cryocooler. Plano-convex lenses are made from inexpensive plastic balls and integrated in proximity with a 3.4 THz DFB QCL. With appropriately chosen lens parameters, dual-lobed Airy beams are generated that autofocus into a high-intensity single-lobed beam with large focusing efficiency. A simple and general method to generate one-dimensional autofocusing Airy beams is thus demonstrated that is applicable at any wavelength. THz laser beams with high peak intensity (57 mW/mm(2) in a spot-size of 1 mm(2) ) or low-divergence (1.4 degrees x 1.8 degrees for a beam with 118 mW peak power) are realized at 62 K in a compact electrically operated Stirling cooler. A high brightness of 5.4 x 10(6) Wsr(-1) m(-2) is estimated for the focused beams by measuring the beam propagation ratios (M-2 parameters). (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:22877 / 22889
页数:13
相关论文
共 35 条
  • [1] Low-divergence single-mode terahertz quantum cascade laser
    Amanti, M. I.
    Fischer, M.
    Scalari, G.
    Beck, M.
    Faist, J.
    [J]. NATURE PHOTONICS, 2009, 3 (10) : 586 - 590
  • [2] [Anonymous], 2006, OXF U
  • [3] [Anonymous], CRYOT GT MOD STIRL C
  • [4] [Anonymous], COMSOL 4 4 FIN EL PA
  • [5] Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range
    Bartalini, S.
    Vitiello, M. S.
    De Natale, P.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2014, 25 (01)
  • [6] Terahertz quantum cascade VECSEL with watt-level output power
    Curwen, Christopher A.
    Reno, John L.
    Williams, Benjamin S.
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (01)
  • [7] Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis
    de Araujo, Marcos A. C.
    Silva, Rubens
    de Lima, Emerson
    Pereira, Daniel P.
    de Oliveira, Paulo C.
    [J]. APPLIED OPTICS, 2009, 48 (02) : 393 - 396
  • [8] Terahertz imaging using quantum cascade lasers-a review of systems and applications
    Dean, P.
    Valavanis, A.
    Keeley, J.
    Bertling, K.
    Lim, Y. L.
    Alhathlool, R.
    Burnett, A. D.
    Li, L. H.
    Khanna, S. P.
    Indjin, D.
    Taimre, T.
    Rakic, A. D.
    Linfield, E. H.
    Davies, A. G.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (37)
  • [9] Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser
    Dean, Paul
    Mitrofanov, Oleg
    Keeley, James
    Kundu, Iman
    Li, Lianhe
    Linfield, Edmund H.
    Davies, A. Giles
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (09)
  • [10] Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays
    Goyal, Anish K.
    Spencer, Melissa
    Shatrovoy, Oleg
    Lee, Benjamin G.
    Diehl, Laurent
    Pfluegl, Christian
    Sanchez, Antonio
    Capasso, Federico
    [J]. OPTICS EXPRESS, 2011, 19 (27): : 26725 - 26732