Robust parameter estimation for dynamical systems from outlier-corrupted data

被引:26
|
作者
Maier, Corinna [1 ,2 ]
Loos, Carolin [1 ,2 ]
Hasenauer, Jan [1 ,2 ]
机构
[1] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Ctr Math, Chair Math Modeling Biol Syst, D-85748 Garching, Germany
关键词
LOCATION; BIOLOGY; MODELS;
D O I
10.1093/bioinformatics/btw703
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Dynamics of cellular processes are often studied using mechanistic mathematical models. These models possess unknown parameters which are generally estimated from experimental data assuming normally distributed measurement noise. Outlier corruption of datasets often cannot be avoided. These outliers may distort the parameter estimates, resulting in incorrect model predictions. Robust parameter estimation methods are required which provide reliable parameter estimates in the presence of outliers. Results: In this manuscript, we propose and evaluate methods for estimating the parameters of ordinary differential equation models from outlier-corrupted data. As alternatives to the normal distribution as noise distribution, we consider the Laplace, the Huber, the Cauchy and the Student's t distribution. We assess accuracy, robustness and computational efficiency of estimators using these different distribution assumptions. To this end, we consider artificial data of a conversion process, as well as published experimental data for Epo-induced JAK/STAT signaling. We study how well the methods can compensate and discover artificially introduced outliers. Our evaluation reveals that using alternative distributions improves the robustness of parameter estimates.
引用
收藏
页码:718 / 725
页数:8
相关论文
共 50 条
  • [41] Outlier-robust tri-percentile parameter estimation of K-distributions
    Yu, Han
    Shui, Peng-Lang
    Lu, Kai
    SIGNAL PROCESSING, 2021, 181
  • [42] Robust Distributed Fault Estimation for a Network of Dynamical Systems
    Zhu, Jun-Wei
    Yang, Guang-Hong
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (01): : 14 - 22
  • [43] Towards Robust Bayesian Estimation for Linear Dynamical Systems
    Liu, Xinpeng
    Yang, Xianqiang
    2023 2ND CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, CFASTA, 2023, : 160 - 165
  • [44] PARAMETER-ESTIMATION OF EXCITATION SYSTEMS FROM SAMPLED DATA
    LIAW, CM
    LIU, TS
    LIU, AH
    CHEN, YT
    LIN, CJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (05) : 663 - 666
  • [45] Sequential Maximal Updated Density Parameter Estimation for Dynamical Systems With Parameter Drift
    del-Castillo-Negrete, Carlos
    Spence, Rylan
    Butler, Troy
    Dawson, Clint
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2025, 126 (03)
  • [46] Robust Parameter Estimation from Point Cloud Data with Noises for Augmented Reality
    Wei, Yingzi
    Zhang, Tianhao
    Gu, Kanfeng
    Shi, Zhengjin
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5247 - 5252
  • [47] A robust strategy for joint data reconciliation and parameter estimation
    Joe, YY
    Wang, D
    Ching, CB
    Tay, A
    Ho, WK
    Romagnoli, J
    EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING - 14, 2004, 18 : 673 - 678
  • [48] Discriminant analysis for compositional data and robust parameter estimation
    Peter Filzmoser
    Karel Hron
    Matthias Templ
    Computational Statistics, 2012, 27 : 585 - 604
  • [49] Discriminant analysis for compositional data and robust parameter estimation
    Filzmoser, Peter
    Hron, Karel
    Templ, Matthias
    COMPUTATIONAL STATISTICS, 2012, 27 (04) : 585 - 604
  • [50] Novel techniques in parameter estimation for fractional dynamical models arising from biological systems
    Liu, F.
    Burrage, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 822 - 833