Robust parameter estimation for dynamical systems from outlier-corrupted data

被引:26
|
作者
Maier, Corinna [1 ,2 ]
Loos, Carolin [1 ,2 ]
Hasenauer, Jan [1 ,2 ]
机构
[1] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Ctr Math, Chair Math Modeling Biol Syst, D-85748 Garching, Germany
关键词
LOCATION; BIOLOGY; MODELS;
D O I
10.1093/bioinformatics/btw703
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Dynamics of cellular processes are often studied using mechanistic mathematical models. These models possess unknown parameters which are generally estimated from experimental data assuming normally distributed measurement noise. Outlier corruption of datasets often cannot be avoided. These outliers may distort the parameter estimates, resulting in incorrect model predictions. Robust parameter estimation methods are required which provide reliable parameter estimates in the presence of outliers. Results: In this manuscript, we propose and evaluate methods for estimating the parameters of ordinary differential equation models from outlier-corrupted data. As alternatives to the normal distribution as noise distribution, we consider the Laplace, the Huber, the Cauchy and the Student's t distribution. We assess accuracy, robustness and computational efficiency of estimators using these different distribution assumptions. To this end, we consider artificial data of a conversion process, as well as published experimental data for Epo-induced JAK/STAT signaling. We study how well the methods can compensate and discover artificially introduced outliers. Our evaluation reveals that using alternative distributions improves the robustness of parameter estimates.
引用
收藏
页码:718 / 725
页数:8
相关论文
共 50 条
  • [21] Robust MIMO Channel Estimation from Incomplete and Corrupted Measurements
    Wen, Fuxi
    Wang, Zhongmin
    Liang, Chen
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1086 - 1091
  • [22] Robust Distributed Parameter Estimation of Nonlinear Systems With Missing Data Over Networks
    Chen, Sicong
    Liu, Ying
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (03) : 2228 - 2244
  • [23] Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems
    Raue, A.
    Steiert, B.
    Schelker, M.
    Kreutz, C.
    Maiwald, T.
    Hass, H.
    Vanlier, J.
    Toensing, C.
    Adlung, L.
    Engesser, R.
    Mader, W.
    Heinemann, T.
    Hasenauer, J.
    Schilling, M.
    Hoefer, T.
    Klipp, E.
    Theis, F.
    Klingmueller, U.
    Schoeberl, B.
    Timmer, J.
    BIOINFORMATICS, 2015, 31 (21) : 3558 - 3560
  • [24] A ROBUST METHOD FOR PARAMETER-ESTIMATION FROM CATCH AND EFFORT DATA
    LUDWIG, D
    WALTERS, CJ
    CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1989, 46 (01) : 137 - 144
  • [25] Improved parameter estimation from noisy time series for nonlinear dynamical systems
    Nakamura, Tomomichi
    Hirata, Yoshito
    Judd, Kevin
    Kilminster, Devin
    Small, Michael
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (05): : 1741 - 1752
  • [26] Neural network architectures for parameter estimation of dynamical systems
    Raol, JR
    Madhuranath, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (04): : 387 - 394
  • [27] Special Section: Parameter Estimation for Dynamical Systems Introduction
    Gugushvili, Shota
    Klaassen, Chris A. J.
    van der Vaart, Aad W.
    MATHEMATICAL BIOSCIENCES, 2013, 246 (02) : 281 - 282
  • [28] Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO
    Ko, Chia-Nan
    Jau, You-Min
    Jeng, Jin-Tsong
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (02) : 675 - 689
  • [29] State and dynamical parameter estimation for open quantum systems
    Gambetta, J.
    Wiseman, H.M.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 421051 - 421051
  • [30] Parameter estimation of autoregressive signals from observations corrupted with colored noise
    Mahmoudi, Alimorad
    Karimi, Mahmood
    SIGNAL PROCESSING, 2010, 90 (01) : 157 - 164