Robust parameter estimation for dynamical systems from outlier-corrupted data

被引:26
|
作者
Maier, Corinna [1 ,2 ]
Loos, Carolin [1 ,2 ]
Hasenauer, Jan [1 ,2 ]
机构
[1] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Ctr Math, Chair Math Modeling Biol Syst, D-85748 Garching, Germany
关键词
LOCATION; BIOLOGY; MODELS;
D O I
10.1093/bioinformatics/btw703
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Dynamics of cellular processes are often studied using mechanistic mathematical models. These models possess unknown parameters which are generally estimated from experimental data assuming normally distributed measurement noise. Outlier corruption of datasets often cannot be avoided. These outliers may distort the parameter estimates, resulting in incorrect model predictions. Robust parameter estimation methods are required which provide reliable parameter estimates in the presence of outliers. Results: In this manuscript, we propose and evaluate methods for estimating the parameters of ordinary differential equation models from outlier-corrupted data. As alternatives to the normal distribution as noise distribution, we consider the Laplace, the Huber, the Cauchy and the Student's t distribution. We assess accuracy, robustness and computational efficiency of estimators using these different distribution assumptions. To this end, we consider artificial data of a conversion process, as well as published experimental data for Epo-induced JAK/STAT signaling. We study how well the methods can compensate and discover artificially introduced outliers. Our evaluation reveals that using alternative distributions improves the robustness of parameter estimates.
引用
收藏
页码:718 / 725
页数:8
相关论文
共 50 条
  • [1] Adaptive integral alternating minimization method for robust learning of nonlinear dynamical systems from highly corrupted data
    Zhang, Tao
    Liu, Guang
    Wang, Li
    Lu, Zhong-rong
    CHAOS, 2023, 33 (12)
  • [2] Robust Finite-Time Parameter Estimation for Linear Dynamical Systems
    Johnson, Ryan S.
    Saoud, Adnane
    Sanfelice, Ricardo G.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4654 - 4659
  • [3] Robust parameter estimation for hybrid dynamical systems with linear parametric uncertainty
    Johnson, Ryan S.
    Di Cairano, Stefano
    Sanfelice, Ricardo G.
    AUTOMATICA, 2024, 167
  • [4] Robust Estimation of a SOPDT Model from Highly Corrupted Step Response Data
    De Keyser, Robin
    Muresan, Cristina I.
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 818 - 823
  • [5] Outlier-robust parameter estimation for unnormalized statistical models
    Sasaki, Hiroaki
    Takenouchi, Takashi
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (01) : 223 - 252
  • [6] Robust parameter estimation from pulsar timing data
    Samajdar, A.
    Shaifullah, G. M.
    Sesana, A.
    Antoniadis, J.
    Burgay, M.
    Chen, S.
    Cognard, I
    Guillemot, L.
    Kramer, M.
    McKee, J. W.
    Mickaliger, M. B.
    Theureau, G.
    Van der Wateren, E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (01) : 1460 - 1468
  • [7] Data-Based Modeling and Control of Dynamical Systems: Parameter Estimation
    Gueho, Damien
    Majji, Manoranjan
    Singla, Puneet
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 31 - 36
  • [8] Gradient-Based Iterative Parameter Estimation Algorithms for Dynamical Systems from Observation Data
    Ding, Feng
    Pan, Jian
    Alsaedi, Ahmed
    Hayat, Tasawar
    MATHEMATICS, 2019, 7 (05)
  • [9] Robust local outlier detection with statistical parameter for big data
    Lei, Jingsheng
    Jiang, Teng
    Wu, Kui
    Du, Haizhou
    Zhu, Lin
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2015, 30 (05): : 411 - 419
  • [10] Comparison of some robust parameter estimation techniques for outlier analysis applied to simulated GOCE mission data
    Kargoll, B
    Gravity, Geoid and Space Missions, 2005, 129 : 77 - 82