Skew key polynomials and a generalized Littlewood-Richardson rule

被引:0
作者
Assaf, Sami [1 ]
van Willigenburg, Stephanie [2 ]
机构
[1] Univ Southern Calif, Dept Math, 3620 S Vermont Ave, Los Angeles, CA 90089 USA
[2] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
SCHUBERT POLYNOMIALS;
D O I
10.1016/j.ejc.2022.103518
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Young's lattice is a partial order on integer partitions whose saturated chains correspond to standard Young tableaux, one type of combinatorial object that generates the Schur basis for symmetric functions. Generalizing Young's lattice, we introduce a new partial order on weak compositions that we call the key poset. Saturated chains in this poset correspond to standard key tableaux, the combinatorial objects that generate the key polynomials, a nonsymmetric polynomial generalization of the Schur basis. Generalizing skew Schur functions, we define skew key polynomials in terms of this new poset. Using weak dual equivalence, we give a nonnegative weak composition Littlewood-Richardson rule for the key expansion of skew key polynomials, generalizing the flagged Littlewood-Richardson rule of Reiner and Shimozono. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 19 条
[1]  
Assaf S., 2018, S M LOTHAR COMBIN, V80B, P12
[3]   Kohnert tableaux and a lifting of quasi-Schur functions [J].
Assaf, Sami ;
Searles, Dominic .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 156 :85-118
[4]   Schubert polynomials, slide polynomials, Stanley symmetric functions and quasi-Yamanouchi pipe dreams [J].
Assaf, Sami ;
Searles, Dominic .
ADVANCES IN MATHEMATICS, 2017, 306 :89-122
[5]  
Assaf Sami H., IN PRESS
[6]   Flagged (P, ρ)-partitions [J].
Assaf, Sarni ;
Bergeron, Nantel .
EUROPEAN JOURNAL OF COMBINATORICS, 2020, 86
[7]   Skew quasisymmetric Schur functions and noncommutative Schur functions [J].
Bessenrodt, C. ;
Luoto, K. ;
van Willigenburg, S. .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4492-4532
[8]  
DEMAZURE M, 1974, B SCI MATH, V98, P163
[9]  
Demazure M., 1974, Ann. Sci. cole Norm. Sup, V7, P53, DOI DOI 10.24033/ASENS.1261
[10]   REFINEMENTS OF THE LITTLEWOOD-RICHARDSON RULE [J].
Haglund, J. ;
Luoto, K. ;
Mason, S. ;
van Willigenburg, S. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (03) :1665-1686