Berry-Esseen bounds for parameter estimation of general Gaussian processes

被引:17
作者
Douissi, Soukaina [1 ]
Es-Sebaiy, Khalifa [2 ]
Viens, Frederi G. [3 ]
机构
[1] Univ Cadi Ayyad, Fac Sci Semlalia, Blvd Abdelkrim Al Khattabi, Marrakech 40000, Morocco
[2] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
[3] Michigan State Univ, Dept Stat & Probabil, 619 Red Cedar Rd, E Lansing, MI 48824 USA
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2019年 / 16卷 / 01期
关键词
Central limit theorem; Berry-Esseen; Nourdin-Peccati analysis; parameter estimation; fractional Brownian motion; long memory; ORNSTEIN-UHLENBECK PROCESS; INEQUALITY;
D O I
10.30757/ALEA.v16-23
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study rates of convergence in central limit theorems for the partial sum of squares of general Gaussian sequences, using tools from analysis on Wiener space. No assumption of stationarity, asymptotically or otherwise, is made. The main theoretical tool is the so-called Optimal Fourth Moment Theorem (Nourdin and Peccati, 2015), which provides a sharp quantitative estimate of the total variation distance on Wiener chaos to the normal law. The only assumptions made on the sequence are the existence of an asymptotic variance, that a least-squares-type estimator for this variance parameter has a bias and a variance which can be controlled, and that the sequence's auto-correlation function, which may exhibit long memory, has a no-worse memory than that of fractional Brownian motion with Hurst parameter H < 3/4. Our main result is explicit, exhibiting the trade-off between bias, variance, and memory. We apply our result to study drift parameter estimation problems for subfractional Ornstein-Uhlenbeck and bifractional Ornstein-Uhlenbeck processes with fixed-time-step observations. These are processes which fail to be stationary or self-similar, but for which detailed calculations result in explicit formulas for the estimators' asymptotic normality.
引用
收藏
页码:633 / 664
页数:32
相关论文
共 23 条
[1]  
[Anonymous], 2013, Malliavin Calculus and Stochastic Analysis: A Festschrift in Honor of David Nualart
[2]  
[Anonymous], 2006, Probability and its Applications
[3]  
[Anonymous], 2012, NORMAL APPROXIMATION
[4]  
[Anonymous], 1975, Lecture Notes in Mathematics
[5]  
Azmoodeh E., 2015, Statistical Inference for Stochastic Processes, V18, P205, DOI [10.1007/s11203-014-9111-8, DOI 10.1007/S11203-014-9111-8]
[6]   Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind [J].
Azmoodeh, Ehsan ;
Morlanes, Jose Igor .
STATISTICS, 2015, 49 (01) :1-18
[7]  
Belfadli R., 2011, Frontiers in Science and Engineering, V1, P1
[8]  
Biermé H, 2012, ALEA-LAT AM J PROBAB, V9, P473
[9]   Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package [J].
Brouste, Alexandre ;
Iacus, Stefano M. .
COMPUTATIONAL STATISTICS, 2013, 28 (04) :1529-1547
[10]  
Cheridito P., 2003, ELECTRON J PROBAB, V8, P14