Hydrothermal Growth of TiO2 Nanorod Arrays and In Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot-Sensitized Solar Cells

被引:72
作者
Huang, Hui [1 ]
Pan, Lei [2 ]
Lim, Chiew Keat [2 ]
Gong, Hua [2 ]
Guo, Jun [3 ]
Tse, Man Siu [2 ]
Tan, Ooi Kiang [2 ]
机构
[1] Singapore Inst Mfg Technol, Singapore 638075, Singapore
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] Soochow Univ, Anal & Testing Ctr, Suzhou 215123, Peoples R China
关键词
hydrothermal synthesis; nanotubes; quantum dots; solar cells; titanium dioxide; TRANSPARENT CONDUCTING OXIDE; TITANIA NANOTUBES; ENERGY-TRANSFER; LOW-COST; HETEROJUNCTION; RUTILE; SIZE;
D O I
10.1002/smll.201203205
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
TiO2 nanorod (NR) and nanotube (NT) arrays grown on transparent conductive substrates are attractive electrode for solar cells. In this paper, TiO2 NR arrays are hydrothermally grown on FTO substrate, and are in situ converted into NT arrays by hydrothermally etching. The TiO2 NR arrays are reported as single crystalline, but the TiO2 NR arrays are demonstrated to be polycrystalline with a bundle of 2-5 nm single crystalline nanocolumns grown along [001] throughout the whole NR from bottom to top. TiO2 NRs can be converted to NTs by hydrothermal selective etching of the (001) core and remaining the inert sidewall of (110) face. A growth mechanism of the NR and NT arrays is proposed. Quantum dot-sensitized solar cells (QDSCs) are fabricated by coating CdSe QDs on to the TiO2 arrays. After conversion from NRs to NTs, more QDs can be filled in the NTs and the energy conversion efficiency of the QDSCs almost double.
引用
收藏
页码:3153 / 3160
页数:8
相关论文
共 55 条
[1]   Formation of titania nanotubes and applications for dye-sensitized solar cells [J].
Adachi, M ;
Murata, Y ;
Okada, I ;
Yoshikawa, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (08) :G488-G493
[2]   Solar Cells by Design: Photoelectrochemistry of TiO2 Nanorod Arrays Decorated with CdSe [J].
Bang, Jin Ho ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (12) :1970-1976
[3]   TiO2-(B) Nanotubes as Anodes for Lithium Batteries: Origin and Mitigation of Irreversible Capacity [J].
Brutti, Sergio ;
Gentili, Valentina ;
Menard, Herve ;
Scrosati, Bruno ;
Bruce, Peter G. .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :322-327
[4]   Efficient inverse Auger recombination at threshold in CdSe nanocrystals [J].
Califano, M ;
Zunger, A ;
Franceschetti, A .
NANO LETTERS, 2004, 4 (03) :525-531
[5]   Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells [J].
Chen, Chia-Yuan ;
Wang, Mingkui ;
Li, Jheng-Ying ;
Pootrakulchote, Nuttapol ;
Alibabaei, Leila ;
Ngoc-le, Cevey-ha ;
Decoppet, Jean-David ;
Tsai, Jia-Hung ;
Graetzel, Carole ;
Wu, Chun-Guey ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael .
ACS NANO, 2009, 3 (10) :3103-3109
[6]   HYDROTHERMAL PREPARATION OF UNIFORM NANOSIZE RUTILE AND ANATASE PARTICLES [J].
CHENG, HM ;
MA, JM ;
ZHAO, ZG ;
QI, LM .
CHEMISTRY OF MATERIALS, 1995, 7 (04) :663-671
[7]   Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production [J].
Cho, In Sun ;
Chen, Zhebo ;
Forman, Arnold J. ;
Kim, Dong Rip ;
Rao, Pratap M. ;
Jaramillo, Thomas F. ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (11) :4978-4984
[8]   Synchronized Energy and Electron Transfer Processes in Covalently Linked CdSe-Squaraine Dye-TiO Light Harvesting Assembly [J].
Choi, Hyunbong ;
Santra, Pralay K. ;
Kamat, Prashant V. .
ACS NANO, 2012, 6 (06) :5718-5726
[9]   Recent developments in photocatalytic water treatment technology: A review [J].
Chong, Meng Nan ;
Jin, Bo ;
Chow, Christopher W. K. ;
Saint, Chris .
WATER RESEARCH, 2010, 44 (10) :2997-3027
[10]   Axis-Oriented, Anatase TiO2 Single Crystals with Dominant {001} and {100} Facets [J].
Cuong Ky Nguyen ;
Cha, Hyun Gil ;
Kang, Young Soo .
CRYSTAL GROWTH & DESIGN, 2011, 11 (09) :3947-3953