Impurity Gettering by Diffusion-doped Polysilicon Passivating Contacts for Silicon Solar Cells

被引:0
作者
Liu, AnYao [1 ]
Yan, Di [1 ]
Wong-Leung, Jennifer [2 ]
Li, Li [3 ]
Phang, Sieu Pheng [1 ]
Cuevas, Andres [1 ]
Macdonald, Daniel [1 ]
机构
[1] Australian Natl Univ, Coll Engn & Comp Sci, Res Sch Engn, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
[3] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Australian Natl Fabricat Facil, Canberra, ACT 2601, Australia
来源
2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC) | 2018年
关键词
gettering; iron; passivating contact; polysilicon; silicon solar cells; IRON; LIFETIME;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We report direct experimental evidence for the strong impurity gettering effects associated with the formation of diffusion-doped polysilicon passivating contacts. Iron is used as a marker impurity in silicon to quantify the gettering effectiveness. By monitoring the iron redistribution from the silicon wafer bulk to the polysilicon surface layers, via a combination of carrier lifetime, secondary ion mass spectrometry (SIMS), and transmission electron microscopy (TEM) techniques, the respective gettering sites in the phosphorus and boron diffusion-doped polysilicon contacts are identified. In phosphorus-doped polysilicon, iron moves to the heavily doped polysilicon layer; and in the boron-doped structure, iron is gettered to the boron-rich layer. Both gettering processes occur via an impurity segregation mechanism. Lastly, the gettering of iron to the polysilicon surface layers is found to have no impact on the passivation quality of the polysilicon contacts.
引用
收藏
页码:1667 / 1671
页数:5
相关论文
共 16 条
[1]   INTERFACE REACTION OF B2O3-SI SYSTEM AND BORON DIFFUSION INTO SILICON [J].
ARAI, E ;
TERUNUMA, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1973, 120 (07) :980-987
[2]  
Benick J., 2015, IEEE J PHOTOVOLT, V7, P1171
[3]   Iron and its complexes in silicon [J].
Istratov, AA ;
Hieslmair, H ;
Weber, ER .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (01) :13-44
[4]   Charge carrier lifetime degradation in Cz silicon through the formation of a boron-rich layer during BBr3 diffusion processes [J].
Kessler, Michael Andreas ;
Ohrdes, Tobias ;
Wolpensinger, Bettina ;
Harder, Nils-Peter .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (05)
[5]   Improvement of the SRH bulk lifetime upon formation of n-type POLO junctions for 25% efficient Si solar cells [J].
Kruegener, Jan ;
Haase, Felix ;
Rienaecker, Michael ;
Brendel, Rolf ;
Osten, H. Joerg ;
Peibst, Robby .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 173 :85-91
[6]  
Liu A., ACS APPL ENERGY MAT
[7]   Effective impurity gettering by phosphorus- and boron-diffused polysilicon passivating contacts for silicon solar cells [J].
Liu, Anyao ;
Yan, Di ;
Phang, Sieu Pheng ;
Cuevas, Andres ;
MacDonald, Daniel .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 179 :136-141
[8]   Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping [J].
Macdonald, DH ;
Geerligs, LJ ;
Azzizi, A .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (03) :1021-1028
[9]   Iron solubility in highly boron-doped silicon [J].
McHugo, SA ;
McDonald, RJ ;
Smith, AR ;
Hurley, DL ;
Weber, ER .
APPLIED PHYSICS LETTERS, 1998, 73 (10) :1424-1426
[10]   Contamination of silicon by iron at temperatures below 800 °C [J].
Murphy, J. D. ;
Falster, R. J. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (10-11) :370-372