Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic

被引:1241
作者
Bowden, Jack [1 ,2 ]
Del Greco, Fabiola M. [3 ]
Minelli, Cosetta [4 ]
Smith, George Davey [1 ]
Sheehan, Nuala A. [5 ]
Thompson, John R. [5 ]
机构
[1] Univ Bristol, MRC Integrat Epidemiol Unit, Bristol, Avon, England
[2] MRC Biostat Unit, Cambridge, England
[3] EURAC Res, Ctr Biomed, Bolzano, Italy
[4] Imperial Coll London, Resp Epidemiol, Occupat Med & Publ Hlth, London, England
[5] Univ Leicester, Dept Hlth Sci, Leicester, Leics, England
关键词
Mendelian randomization; MR-Egger regression; measurement error; I-2; statistic; simulation extrapolation; INSTRUMENTAL VARIABLES; BIAS;
D O I
10.1093/ije/dyw220
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the 'NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied. Methods: An adaptation of the I-2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it I-2 GX. The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example. Results: In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values I-GX(2)), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We demonstrate our proposed approach for a two-sample summary data MR analysis to estimate the causal effect of low-density lipoprotein on heart disease risk. A high value of I-GX(2) close to 1 indicates that dilution does not materially affect the standard MR-Egger analyses for these data. Conclusions: Care must be taken to assess the NOME assumption via the I-GX(2) statistic before implementing standard MR-Egger regression in the two-sample summary data context. If I-GX(2) is sufficiently low (less than 90%), inferences from the method should be interpreted with caution and adjustment methods considered.
引用
收藏
页码:1961 / 1974
页数:14
相关论文
共 28 条
[1]  
[Anonymous], TECHNICAL REPORT
[2]  
[Anonymous], SYSTEMATIC REV HEALT
[3]  
[Anonymous], TECHNICAL REPORT
[4]  
[Anonymous], J AM STAT ASSOC
[5]   Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator [J].
Bowden, Jack ;
Smith, George Davey ;
Haycock, Philip C. ;
Burgess, Stephen .
GENETIC EPIDEMIOLOGY, 2016, 40 (04) :304-314
[6]   Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J].
Bowden, Jack ;
Smith, George Davey ;
Burgess, Stephen .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) :512-525
[7]   Mendelian randomization analysis of case-control data using structural mean models [J].
Bowden, Jack ;
Vansteelandt, Stijn .
STATISTICS IN MEDICINE, 2011, 30 (06) :678-694
[8]   Calculating statistical power in Mendelian randomization studies [J].
Brion, Marie-Jo A. ;
Shakhbazov, Konstantin ;
Visscher, Peter M. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (05) :1497-1501
[9]   Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods [J].
Burgess, Stephen ;
Dudbridge, Frank ;
Thompson, Simon G. .
STATISTICS IN MEDICINE, 2016, 35 (11) :1880-1906
[10]   Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data [J].
Burgess, Stephen ;
Butterworth, Adam ;
Thompson, Simon G. .
GENETIC EPIDEMIOLOGY, 2013, 37 (07) :658-665