Robust CVaR-based portfolio optimization under a genal affine data perturbation uncertainty set

被引:0
作者
Dai, Zhifeng [1 ,2 ]
Wen, Fenghua [2 ]
机构
[1] Changsha Univ Sci & Technol, Coll Math & Computat Sci, Changsha 410114, Hunan, Peoples R China
[2] Cent S Univ, Coll Business, Changsha 410004, Hunan, Peoples R China
关键词
Conditional value at risk(CVaR); robust optimization; line programming(LP); second-order cone programming(SOCP); VALUE-AT-RISK; CONDITIONAL VALUE; SELECTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Under a genal affine data perturbation uncertainty set, we propose a computationally tractable robust optimization method for minimizing the CVaR of a portfolio. Using L-1 norm, the robust counterpart problem can be a linear programming problem. Moreover, it is less conservative than the Quaranta and Zaffaroni's method which is under box uncertainty set. We present some numerical experiments with real market data to illustrate the behavior of robust optimization model.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 21 条
[1]  
An Xiao-min, 2010, Journal of Hunan University (Natural Science), V37, P89
[2]  
[Anonymous], 9604 OFOR U ILL
[3]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[4]  
Black F., 1992, Financial Analysts Journal, V48, P28, DOI DOI 10.2469/FAJ.V48.N5.28
[5]   A robust optmization perspective on stochastic programming [J].
Chen, Xin ;
Sim, Melvyn ;
Sun, Peng .
OPERATIONS RESEARCH, 2007, 55 (06) :1058-1071
[6]   THE EFFECT OF ERRORS IN MEANS, VARIANCES, AND COVARIANCES ON OPTIMAL PORTFOLIO CHOICE [J].
CHOPRA, VK ;
ZIEMBA, WT .
JOURNAL OF PORTFOLIO MANAGEMENT, 1993, 19 (02) :6-11
[7]  
Dai ZF, 2012, PAC J OPTIM, V8, P429
[8]  
Dowd K., 2002, Measuring Market Risk
[9]  
El Ghaoui L, 2003, OPER RES, V51, P543, DOI 10.1287/opre.51.4.543.16101
[10]   Robust portfolio selection problems [J].
Goldfarb, D ;
Iyengar, G .
MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (01) :1-38