Plasma current, shape, and position control in ITER

被引:23
作者
Albanese, R
Ambrosino, G
Coccorese, E
Morabito, FC
Pironti, A
Rubinacci, G
Scala, S
机构
[1] Consorzio CREATE, c/o Università degli Studi di Napoli Federico II, Dipartimenio di Ingegneria Elettrica, I-80125 Naples
[2] Department of Electrical Engineering, Università di Reggio Calabria
[3] Department of Electrical Engineering, Università di Cassino
来源
FUSION TECHNOLOGY | 1996年 / 30卷 / 02期
关键词
Feedback stabilization; ITER tokamak; Plasma shape control;
D O I
10.13182/FST96-A30749
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A linear model for feedback control of the plasma position and shape in the International Thermonuclear Experimental Reactor (ITER) is discussed. A model of the poloidal field (PF) system and of the disturbances is first derived. The main task of the control system is to avoid any contact of the hot plasma with the wall during the long duration of the burn phase. For this purpose, the control variables are specified as six gaps between the plasma separatrix and the first wall, including divertor channels. The structure model includes PF coils, vacuum vessel, first wall, backplate, and divertor fins, and it refers to the TAC-4 outline design ITER geometry. A multivariable controller is designed using the optimal linear quadratic approach. The simulation of the closed-loop system shows how the plasma shape is recovered: Step gap variations of 15 cm and poloidal beta drops of 0.2 are considered as disturbances. The performance parameters are voltages and currents in the PF coils and gap recovery time; voltage saturation of the actuators is also taken into account.
引用
收藏
页码:167 / 183
页数:17
相关论文
共 39 条
[31]   Multimachine Data-Based Prediction of High-Frequency Sensor Signal Noise for Resistive Wall Mode Control in ITER [J].
Liu, Yueqiang ;
Sabbagh, S. A. ;
Chapman, I. T. ;
Gerasimov, S. ;
Gribov, Y. ;
Hender, T. C. ;
Igochine, V. ;
Maraschek, M. ;
Matsunaga, G. ;
Okabayashi, M. ;
Strait, E. J. .
FUSION SCIENCE AND TECHNOLOGY, 2016, 70 (03) :387-405
[32]   Real time magnetic control of the snowflake plasma configuration in the TCV tokamak [J].
Anand, H. ;
Coda, S. ;
Felici, F. ;
Galperti, C. ;
Moret, J-M ;
Labit, B. ;
Reimerdes, H. ;
Maurizio, R. .
NUCLEAR FUSION, 2019, 59 (12)
[33]   STATE RECONSTRUCTION AND NOISE REDUCTION BY KALMAN FILTER IN THE VERTICAL POSITION CONTROL ON ALCATOR C-MOD [J].
Ferrara, M. ;
Hutchinson, I. H. ;
Wolfe, S. M. .
FUSION SCIENCE AND TECHNOLOGY, 2009, 56 (04) :1476-1488
[34]   Surrogate models for plasma displacement and current in 3D perturbed magnetohydrodynamic equilibria in tokamaks [J].
Liu, Yueqiang ;
Akcay, Cihan ;
Lao, Lang L. ;
Sun, Xuan .
NUCLEAR FUSION, 2022, 62 (12)
[35]   Magnetic diagnostics for equilibrium reconstruction and realtime plasma control in NSTX-Upgrade [J].
Gerhardt, S. P. ;
Erickson, K. ;
Kaita, R. ;
Lawson, J. ;
Mozulay, R. ;
Mueller, D. ;
Que, W. ;
Rahman, N. ;
Schneider, H. ;
Smalley, G. ;
Tresemer, K. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11)
[36]   Robust H∞ switching MIMO control for a plasma time-varying parameter model with a variable structure in a tokamak [J].
Mitrishkin, Yuri V. ;
Prohorov, Artem A. ;
Korenev, Pavel S. ;
Patrov, Mikhail I. .
IFAC PAPERSONLINE, 2017, 50 (01) :11385-11390
[37]   CREATE-NL plus : A robust control-oriented free boundary dynamic plasma equilibrium solver [J].
Albanese, R. ;
Ambrosino, R. ;
Mattei, M. .
FUSION ENGINEERING AND DESIGN, 2015, 96-97 :664-667
[38]   Synthesis and operation of an FFT-decoupled fixed-order reversed-field pinch plasma control system based on identification data [J].
Olofsson, K. Erik J. ;
Brunsell, Per R. ;
Witrant, Emmanuel ;
Drake, James R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (10)
[39]   Gray-box modeling of resistive wall modes with vacuum-plasma separation and optimal control design for EXTRAP T2R [J].
Setiadi, A. C. ;
Brunsell, P. R. ;
Villone, F. ;
Mastrostefano, S. ;
Frassinetti, L. .
FUSION ENGINEERING AND DESIGN, 2017, 121 :245-255