On Bayesian Tracking and Prediction of Radar Cross Section

被引:6
作者
Meller, Michal [1 ,2 ]
机构
[1] Gdansk Univ Technol, Dept Automat Control, Fac Elect Telecommun & Comp Sci, PL-80233 Gdansk, Poland
[2] PIT RADWAR SA, Architect Digital Syst, PL-04051 Warsaw, Poland
关键词
TARGET RECOGNITION; GAMMA; PROBABILITY; ALGORITHM; MODEL;
D O I
10.1109/TAES.2018.2875572
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We consider the problem of Bayesian tracking of radar cross section. The adopted observation model employs the gamma family, which covers all Swerling cases in a unified framework. State dynamics are modeled using a nonstationary autoregressive gamma process. The principal component of the proposed solution is a nontrivial gamma approximation, applied during the time update recursion. The superior performance of the proposed approach is confirmed using simulations and a real-world dataset.
引用
收藏
页码:1756 / 1768
页数:13
相关论文
共 46 条
  • [1] Anderson Brian DO, 2012, Optimal filtering
  • [2] [Anonymous], 1994, COMPUT STAT DATA AN, DOI DOI 10.1016/0167-9473(96)90015-8
  • [3] [Anonymous], THESIS
  • [4] [Anonymous], 2002, INTRO RADAR SYSTEMS
  • [5] [Anonymous], P 9 INT C INF FUS FL
  • [6] Cubature Kalman Filters
    Arasaratnam, Ienkaran
    Haykin, Simon
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) : 1254 - 1269
  • [7] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [8] TRACKING A MANEUVERING TARGET USING INPUT ESTIMATION VERSUS THE INTERACTING MULTIPLE MODEL ALGORITHM
    BARSHALOM, Y
    CHANG, KC
    BLOM, HAP
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1989, 25 (02) : 296 - 300
  • [9] Barton D.K., 2005, RADAR SYSTEM ANAL MO
  • [10] Bell KL, 2015, IEEE RAD CONF, P1394, DOI 10.1109/RADAR.2015.7131213