Higher Yield Urea-Derived Polymeric Graphitic Carbon Nitride with Mesoporous Structure and Superior Visible-Light-Responsive Activity

被引:136
作者
Shi, Lei [2 ]
Liang, Lin [3 ]
Wang, Fangxiao [2 ]
Liu, Mengshuai [2 ]
Chen, Kunlong [2 ]
Sun, Kening [2 ]
Zhang, Naiqing [2 ]
Sun, Jianmin [1 ,2 ]
机构
[1] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Harbin 150080, Peoples R China
[3] Harbin Inst Technol, Sch Life Sci & Technol, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesoporous g-C3M4; Urea; TEOS; High yield; Visible-light catalysis; ENHANCED PHOTOCATALYTIC ACTIVITY; IN-SITU; COMPOSITE PHOTOCATALYSTS; FACILE SYNTHESIS; G-C3N4; WATER; SEMICONDUCTORS; NANOSHEETS; STABILITY; EVOLUTION;
D O I
10.1021/acssuschemeng.5b01139
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of mesoporous graphitic carbon nitride (mg-C3N4) materials have been prepared with urea and tetraethylorthosilicate (TEOS) as the precursors, which were thermally polycondensed to obtain the g-C3N4/silica composites, after silica was removed, mg-C3N4 with large surface area (170 m(2) g(-1)) was successfully prepared. Excitingly, TEOS did not only act as a mesoporous-directing agent but also as the promoter for the urea polycondensation to g-C3N4, which made the urea polycondensation proceed at relatively low temperature. Thus, volatilization or/and decomposition of urea in the process of thermal treatment were reduced, resulting in the product yield of g-C3N4 from 0.3 to 0.4 g/10 g urea remarkably increasing to 1.2 g/10 g urea. Moreover, superior photocatalytic activities were observed for degrading methyl orange (MO) and H-2 generation from water splitting over the mg-C3N4 photocatalyst. The facilely developed method for high-yield mesoporous g-C3N4 from cost-effective urea was more attractive for its wide applications in environmental treatment and energy development fields.
引用
收藏
页码:3412 / 3419
页数:8
相关论文
共 41 条
[1]   A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material [J].
Bai, Xiaojuan ;
Yan, Shicheng ;
Wang, Jiajia ;
Wang, Li ;
Jiang, Wenjun ;
Wu, Songling ;
Sun, Changpo ;
Zhu, Yongfa .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (41) :17521-17529
[2]   Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification [J].
Bai, Xiaojuan ;
Wang, Li ;
Wang, Yajun ;
Yao, Wenqing ;
Zhu, Yongfa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 152 :262-270
[3]   Enhancement of visible photocatalytic activity via Ag@C3N4 core-shell plasmonic composite [J].
Bai, Xiaojuan ;
Zong, Ruilong ;
Li, Cuixia ;
Liu, Di ;
Liu, Yanfang ;
Zhu, Yongfa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 147 :82-91
[4]   Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light [J].
Chen, Xiufang ;
Jun, Young-Si ;
Takanabe, Kazuhiro ;
Maeda, Kazuhiko ;
Domen, Kazunari ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
CHEMISTRY OF MATERIALS, 2009, 21 (18) :4093-4095
[5]   Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process [J].
Chen, Yinghong ;
Wang, Qi ;
Yan, Wei ;
Tang, Hongmei .
POLYMER DEGRADATION AND STABILITY, 2006, 91 (11) :2632-2643
[6]   Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis [J].
Cui, Yanjuan ;
Ding, Zhengxin ;
Fu, Xianzhi ;
Wang, Xinchen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (47) :11814-11818
[7]   Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity [J].
Dong, Fan ;
Wang, Zhenyu ;
Sun, Yanjuan ;
Ho, Wing-Kei ;
Zhang, Haidong .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 401 :70-79
[8]   Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance [J].
Dong, Fan ;
Sun, Yanjuan ;
Wu, Liwen ;
Fu, Min ;
Wu, Zhongbiao .
CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (07) :1332-1335
[9]   Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism [J].
Fu, Jie ;
Chang, Binbin ;
Tian, Yanlong ;
Xi, Fengna ;
Dong, Xiaoping .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (09) :3083-3090
[10]   Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles [J].
Ge, Lei ;
Han, Changcun ;
Liu, Jing ;
Li, Yunfeng .
APPLIED CATALYSIS A-GENERAL, 2011, 409 :215-222