ML ESTIMATION OF COVARIANCE MATRICES WITH KRONECKER AND PERSYMMETRIC STRUCTURE
被引:6
作者:
Jansson, Magnus
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, KTH, ACCESS Linnaeus Ctr, Elect Engn Signal Proc lab, Stockholm, SwedenRoyal Inst Technol, KTH, ACCESS Linnaeus Ctr, Elect Engn Signal Proc lab, Stockholm, Sweden
Jansson, Magnus
[1
]
Wirfalt, Petter
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, KTH, ACCESS Linnaeus Ctr, Elect Engn Signal Proc lab, Stockholm, SwedenRoyal Inst Technol, KTH, ACCESS Linnaeus Ctr, Elect Engn Signal Proc lab, Stockholm, Sweden
Wirfalt, Petter
[1
]
Werner, Karl
论文数: 0引用数: 0
h-index: 0
机构:
Ericsson AB, Ericsson Res, Kista, SwedenRoyal Inst Technol, KTH, ACCESS Linnaeus Ctr, Elect Engn Signal Proc lab, Stockholm, Sweden
Werner, Karl
[2
]
Ottersten, Bjorn
论文数: 0引用数: 0
h-index: 0
机构:
Royal Inst Technol, KTH, ACCESS Linnaeus Ctr, Elect Engn Signal Proc lab, Stockholm, SwedenRoyal Inst Technol, KTH, ACCESS Linnaeus Ctr, Elect Engn Signal Proc lab, Stockholm, Sweden
Ottersten, Bjorn
[1
]
机构:
[1] Royal Inst Technol, KTH, ACCESS Linnaeus Ctr, Elect Engn Signal Proc lab, Stockholm, Sweden
[2] Ericsson AB, Ericsson Res, Kista, Sweden
来源:
2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS
|
2009年
关键词:
Structured covariance matrices;
Kronecker;
Persymmetric;
Centro-Hermitian;
Forward-backward;
Maximum likelihood;
MODEL;
D O I:
10.1109/DSP.2009.4785938
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Estimation of covariance matrices is often an integral part in many signal processing algorithms. In some applications, the covariance matrices can be assumed to have certain structure. Imposing this structure in the estimation typically leads to improved accuracy and robustness (e.g., to small sample effects). In MIMO communications or in signal modelling of EEG data the full covariance matrix can sometimes be modelled as the Kronecker product of two smaller covariance matrices. These smaller matrices may also be structured, e.g., being Toeplitz or at least persymmetric. In this paper we discuss a recently proposed closed form maximum likelihood (ML) based method for the estimation of the Kronecker factor matrices. We also extend the previously presented method to be able to impose the persymmetric constraint into the estimator. Numerical examples show that the mean square errors of the new estimator attains the Cramer-Rao bound even for very small sample sizes.
机构:
KTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, Sweden
Werner, Karl
Jansson, Magnus
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, Sweden
Jansson, Magnus
Stoica, Petre
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Informat Technol, Syst & Control Div, SE-75105 Uppsala, SwedenKTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, Sweden
机构:
KTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, Sweden
Werner, Karl
Jansson, Magnus
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, SwedenKTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, Sweden
Jansson, Magnus
Stoica, Petre
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Informat Technol, Syst & Control Div, SE-75105 Uppsala, SwedenKTH Royal Inst Technol, ACCESS Linnaeus Ctr Elect Engn, SE-10044 Stockholm, Sweden