Automorphisms of Ideals of Polynomial Rings

被引:0
作者
Macedo, Tiago [1 ,2 ]
de Mello, Thiago Castilho [2 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[2] Univ Fed Sao Paulo, Dept Sci & Technol, BR-12247014 Sao Jose Dos Campos, SP, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2018年 / 49卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Automorphisms; Commutative Algebra; Ideals; FREE ASSOCIATIVE ALGEBRA;
D O I
10.1007/s00574-017-0046-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative integral domain with unit, f be a nonconstant monic polynomial in R[t], and be the ideal generated by f. In this paper we study the group of R-algebra automorphisms of the R-algebra without unit . We show that, if f has only one root (possibly with multiplicity), then . We also show that, under certain mild hypothesis, if f has at least two different roots in the algebraic closure of the quotient field of R, then is a cyclic group and its order can be completely determined by analyzing the roots of f.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 13 条