Finite group elements where no irreducible character vanishes

被引:77
作者
Isaacs, IM [1 ]
Navarro, G
Wolf, TR
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Valencia, Fac Matemat, Dept Algebra, E-46100 Valencia, Spain
[3] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
D O I
10.1006/jabr.1999.8007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider elements x of a finite group G with the property that chi(x) not equal 0 for all irreducible characters chi of G. If G is solvable and x has odd order, we show that x must lie in the Fitting subgroup F(G). (C) 1999 Academic Press.
引用
收藏
页码:413 / 423
页数:11
相关论文
共 5 条
[1]  
Conway J., 1985, ATLAS FINITE GROUPS
[2]  
Isaacs I.M., 1994, CHARACTER THEORY FIN
[3]   Large orbits in actions of nilpotent groups [J].
Isaacs, IM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) :45-50
[4]   A FINITE SIMPLE-GROUP OF LIE TYPE HAS P-BLOCKS WITH DIFFERENT DEFECTS, P NOT-EQUAL 2 [J].
MICHLER, GO .
JOURNAL OF ALGEBRA, 1986, 104 (02) :220-230
[5]   BLOCKS OF DEFECT ZERO IN FINITE SIMPLE-GROUPS OF LIE TYPE [J].
WILLEMS, W .
JOURNAL OF ALGEBRA, 1988, 113 (02) :511-522