Deep Learning for Detection of Fetal ECG from Multi-Channel Abdominal Leads

被引:0
作者
Lo, Fang-Wen [1 ]
Tsai, Pei-Yun [1 ]
机构
[1] Natl Cent Univ, Dept Elect Engn, Taoyuan, Taiwan
来源
2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC) | 2018年
关键词
Electrocardiogram ( ECG); fetal ECG; abdominal ECG; convolutional neural network; classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose to use a CNN-based approach for fetal ECG detection from the abdominal ECG recording. Our work flow contains a pre-processing phase and a classification phase. In the pre-processing phase, abdominal ECG waveform is normalized and segmented. Then, short-time Fourier transform is applied to obtain time-frequency representation. The 2D representation is sent to 2D convolutional neural network for classification. Two convolutional layers, two pooling layers, one fully-connected layer are used. The softmax activation function is used at the output layer to compute the probabilities of four events. The classified results from multiple channels are fused to derive the final detection according to the respective detection accuracies. Compared to the K-nearest neighbor algorithm, the CNN-based classifier has better detection accuracy.
引用
收藏
页码:1397 / 1401
页数:5
相关论文
共 13 条
[1]   Robust fetal ECG extraction and detection from abdominal leads [J].
Andreotti, Fernando ;
Riedl, Maik ;
Himmelsbach, Tilo ;
Wedekind, Daniel ;
Wessel, Niels ;
Stepan, Holger ;
Schmieder, Claudia ;
Jank, Alexander ;
Malberg, Hagen ;
Zaunseder, Sebastian .
PHYSIOLOGICAL MEASUREMENT, 2014, 35 (08) :1551-1567
[2]  
Chun SY, 2016, 2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), P656, DOI 10.1109/TSP.2016.7760964
[3]  
Delgado A, 2015, PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), P1, DOI 10.1109/ICEAA.2015.7297059
[4]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[5]  
Gurve D, 2017, IEEE ENG MED BIO, P2794, DOI 10.1109/EMBC.2017.8037437
[6]  
Hong Wan, 2008, 2008 9th International Conference on Signal Processing (ICSP 2008), P2761, DOI 10.1109/ICOSP.2008.4697720
[7]  
Ionescu V., 2015, IEEE INT C E HLTH BI, P1
[8]   An automated methodology for fetal heart rate extraction from the abdominal electrocardiogram [J].
Karvounis, Evaggelos C. ;
Tsipouras, Markos G. ;
Fotiadis, Dimitrios I. ;
Naka, Katerina K. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2007, 11 (06) :628-638
[9]   Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks [J].
Kiranyaz, Serkan ;
Ince, Turker ;
Gabbouj, Moncef .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (03) :664-675
[10]  
Krishna BT, 2017, 2017 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES (ICRAS), P167, DOI 10.1109/ICRAS.2017.8071938