A posterior error analysis for the nonconforming discretization of Stokes eigenvalue problem

被引:6
|
作者
Jia, Shang Hui [1 ]
Luo, Fu Sheng [2 ]
Xie, He Hu [3 ]
机构
[1] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
[2] SOA, Inst Oceanog 3, Xiamen 361005, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
A posteriori error estimate; adaptive finite element method; nonconforming; Stokes eigenvalue problem; FINITE-ELEMENT APPROXIMATIONS; CONVERGENCE; ESTIMATORS;
D O I
10.1007/s10114-014-3121-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a posteriori error estimator for the nonconforming finite element approximation, including using Crouzeix-Raviart element and extended Crouzeix-Raviart element, of the Stokes eigenvalue problem. With the technique of Helmholtz decomposition, we first give out a posteriori error estimator and prove it as the global upper bound and local lower bound of the approximation error. Then, by deleting a jump term in the indicator, another simpler but equivalent indicator is obtained. Some numerical experiments are provided to verify our analysis.
引用
收藏
页码:949 / 967
页数:19
相关论文
共 50 条