Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation

被引:6
作者
Konyaev, A. Yu. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
关键词
Poisson bracket; Lie algebra; coadjoint representation; integrable systems; INTEGRABLE HAMILTONIAN-SYSTEMS;
D O I
10.1070/SM2014v205n01ABEH004366
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a complete list of real Lie algebras with generic orbits of dimension 2 in the coadjoint representation.
引用
收藏
页码:45 / 62
页数:18
相关论文
共 20 条
[1]   LIE-GROUPS WHOSE COADJOINT ORBITS ARE OF DIMENSION SMALLER OR EQUAL TO 2 [J].
ARNAL, D ;
CAHEN, M ;
LUDWIG, J .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 33 (02) :183-186
[2]  
Bianchi L, 1898, MEM MAT FIS SOC ITAL, VXI, P267
[3]  
Bolsinov A., 2000, Proceedings of the Steklov Institute of Math, V231, P42
[4]   COMPATIBLE POISSON BRACKETS ON LIE-ALGEBRAS AND COMPLETENESS OF FAMILIES OF FUNCTIONS IN INVOLUTION [J].
BOLSINOV, AV .
MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01) :69-90
[5]  
Bolsinov AV, 2000, INVENT MATH, V140, P639
[6]  
[Борисов Алексей Владимирович Borisov A.V.], 2010, [Нелинейная динамика, Russian Journal of Nonlinear Dynamics, Nelineinaya dinamika], V6, P127
[7]  
Brailov A. V., 1989, Math. USSR-Sb, V62, P373
[8]  
Fomenko A. T., 1981, MATH USSR SB, V115, P263
[9]  
Fomenko A. T., 1988, ADV STUD CONT MATH, V2
[10]   THE SYMPLECTIC TOPOLOGY OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS [J].
FOMENKO, AT .
RUSSIAN MATHEMATICAL SURVEYS, 1989, 44 (01) :181-219