Variational problem for Hamiltonian system on so(k, m) Lie-Poisson manifold and dynamics of semiclassical spin

被引:2
作者
Deriglazov, A. A. [1 ,2 ]
机构
[1] Univ Fed Juiz de Fora, Dept Matemat, ICE, Juiz De Fora, MG, Brazil
[2] Tomsk Polytech Univ, Phys Math Lab, Tomsk 634050, Russia
关键词
Theories with Dirac constraints; variational formulation on Lie-Poisson manifolds; semiclassical models of spin; CLASSICAL MECHANICS; PARTICLE; SPACE;
D O I
10.1142/S0217732314500485
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe the procedure for obtaining Hamiltonian equations on a in with so(k, in.) Lie Poisson bracket from a variational problem. This implies identification of the manifold with base of a properly constructed fiber bundle embedded as a surface into the phase space with canonical Poisson bracket. Our geometric construction underlies the formalism used for construction of spinning particles in [A. A. Deriglazov, Mod. Phys. Lett. A 28, 1250234 (2013); Ann. Phys. 327, 398 (2012); Phys. Lett. A 376, 309 (2012)], and gives precise mathematical formulation of the oldest idea about spin as the "inner angular momentum".
引用
收藏
页数:18
相关论文
共 45 条
[31]   Gauge invariance and classical dynamics of noncommutative particle theory [J].
Gitman, D. M. ;
Kupriyanov, V. G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[32]  
Gitman D.M., 1990, Quantization of Fields with Constraints
[33]   RELATIVISTIC SPHERICAL TOP [J].
HANSON, AJ ;
REGGE, T .
ANNALS OF PHYSICS, 1974, 87 (02) :498-566
[34]   Fundamental structures of M(brane) theory [J].
Hoppe, Jens .
PHYSICS LETTERS B, 2011, 695 (1-4) :384-386
[35]   Projective interpretation of some doubly special relativity theories [J].
Jafari, N. ;
Shariati, A. .
PHYSICAL REVIEW D, 2011, 84 (06)
[36]   Notes on non-commutative Chern-Simons quantum mechanics [J].
Jing, Jian ;
Cui, You ;
Long, Zheng-Wen ;
Chen, Jian-Feng .
EUROPEAN PHYSICAL JOURNAL C, 2010, 67 (3-4) :583-588
[37]   Symmetries in a constrained system with a singular higher-order Lagrangian [J].
Li, Zi-ping ;
Li, Rui-jie .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (02) :395-420
[38]   D=4 extended Galilei superalgebras with central charges [J].
Lukierski, Jerzy .
PHYSICS LETTERS B, 2011, 694 (4-5) :478-481
[39]   UNDEFORMED (ADDITIVE) ENERGY CONSERVATION LAW IN DOUBLY SPECIAL RELATIVITY [J].
Mandanici, Gianluca .
MODERN PHYSICS LETTERS A, 2009, 24 (10) :739-745
[40]   NONCOMMUTATIVE MECHANICS AND EXOTIC GALILEAN SYMMETRY [J].
Martina, L. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 167 (03) :816-825