Variational problem for Hamiltonian system on so(k, m) Lie-Poisson manifold and dynamics of semiclassical spin
被引:2
|
作者:
Deriglazov, A. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Juiz de Fora, Dept Matemat, ICE, Juiz De Fora, MG, Brazil
Tomsk Polytech Univ, Phys Math Lab, Tomsk 634050, RussiaUniv Fed Juiz de Fora, Dept Matemat, ICE, Juiz De Fora, MG, Brazil
Deriglazov, A. A.
[1
,2
]
机构:
[1] Univ Fed Juiz de Fora, Dept Matemat, ICE, Juiz De Fora, MG, Brazil
[2] Tomsk Polytech Univ, Phys Math Lab, Tomsk 634050, Russia
Theories with Dirac constraints;
variational formulation on Lie-Poisson manifolds;
semiclassical models of spin;
CLASSICAL MECHANICS;
PARTICLE;
SPACE;
D O I:
10.1142/S0217732314500485
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We describe the procedure for obtaining Hamiltonian equations on a in with so(k, in.) Lie Poisson bracket from a variational problem. This implies identification of the manifold with base of a properly constructed fiber bundle embedded as a surface into the phase space with canonical Poisson bracket. Our geometric construction underlies the formalism used for construction of spinning particles in [A. A. Deriglazov, Mod. Phys. Lett. A 28, 1250234 (2013); Ann. Phys. 327, 398 (2012); Phys. Lett. A 376, 309 (2012)], and gives precise mathematical formulation of the oldest idea about spin as the "inner angular momentum".