Variational problem for Hamiltonian system on so(k, m) Lie-Poisson manifold and dynamics of semiclassical spin

被引:2
|
作者
Deriglazov, A. A. [1 ,2 ]
机构
[1] Univ Fed Juiz de Fora, Dept Matemat, ICE, Juiz De Fora, MG, Brazil
[2] Tomsk Polytech Univ, Phys Math Lab, Tomsk 634050, Russia
关键词
Theories with Dirac constraints; variational formulation on Lie-Poisson manifolds; semiclassical models of spin; CLASSICAL MECHANICS; PARTICLE; SPACE;
D O I
10.1142/S0217732314500485
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe the procedure for obtaining Hamiltonian equations on a in with so(k, in.) Lie Poisson bracket from a variational problem. This implies identification of the manifold with base of a properly constructed fiber bundle embedded as a surface into the phase space with canonical Poisson bracket. Our geometric construction underlies the formalism used for construction of spinning particles in [A. A. Deriglazov, Mod. Phys. Lett. A 28, 1250234 (2013); Ann. Phys. 327, 398 (2012); Phys. Lett. A 376, 309 (2012)], and gives precise mathematical formulation of the oldest idea about spin as the "inner angular momentum".
引用
收藏
页数:18
相关论文
empty
未找到相关数据