Bootstrap confidence intervals of generalized process capability index Cpyk for Lindley and power Lindley distributions

被引:32
作者
Dey, Sanku [1 ]
Saha, Mahendra [2 ]
Maiti, Sudhansu S. [3 ]
Jun, Chi-Hyuck [4 ]
机构
[1] St Anthonys Coll, Dept Stat, Shillong, Meghalayn, India
[2] Cent Univ Rajasthan, Dept Stat, Bandar Sindri, Rajasthan, India
[3] Visva Bharati Univ, Dept Stat, Santini Ketan, W Bengal, India
[4] POSTECH, Dept Ind & Management Engn, Pohang, South Korea
关键词
Combining categories; Interobserver agreement; Symmetric kappa; Unweighted kappa; Weighted kappa;
D O I
10.1080/03610918.2017.1280166
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One of the indicators for evaluating the capability of a process is the process capability index. In this article, bootstrap confidence intervals of the generalized process capability index (GPCI) proposed by Maiti et al. are studied through simulation, when the underlying distributions are Lindley and Power Lindley distributions. The maximum likelihood method is used to estimate the parameters of the models. Three bootstrap confidence intervals namely, standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile bootstrap (BCPB) are considered for obtaining confidence intervals of GPCI. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average width of the bootstrap confidence intervals. Simulation results show that the estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap confidence interval get closer to the nominal confidence level than those of the standard bootstrap confidence interval. Finally, three real datasets are analyzed for illustrative purposes.
引用
收藏
页码:249 / 262
页数:14
相关论文
共 43 条
[1]  
[Anonymous], 2003, STAT MODEL METHODS L
[2]  
Badar MG, 1982, PROGR SCI ENG COMPOS, P1129, DOI DOI 10.12691/AJAMS-6-5-5
[3]   An extended Lindley distribution [J].
Bakouch, Hassan S. ;
Al-Zahrani, Bander M. ;
Al-Shomrani, Ali A. ;
Marchi, Vitor A. A. ;
Louzada, Francisco .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (01) :75-85
[4]  
Barnett N. S., 1988, INT J QUALITY RELIAB, V7, P34
[5]   A fraction defective based capability index [J].
Borges, WD ;
Ho, LL .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2001, 17 (06) :447-458
[6]  
CARR WE, 1991, QUAL PROG, V24, P152
[7]   A NEW MEASURE OF PROCESS CAPABILITY - CPM [J].
CHAN, LK ;
CHENG, SW ;
SPIRING, FA .
JOURNAL OF QUALITY TECHNOLOGY, 1988, 20 (03) :162-175
[8]  
Chen F. A., 1997, QUAL RELIAB ENG INT, V11, P1
[9]  
Choi B. C., 1990, COMMUNICATIONS STAT, V19, P1232, DOI [10.1080/03610929008830258, DOI 10.1080/03610929008830258]
[10]  
CHOI IS, 1996, P INT C COMP IND ENG, V20, P1211