Nanopore confinement for electrochemical sensing at the single-molecule level

被引:31
作者
Lin, Yao
Ying, Yi-Lun
Long, Yi-Tao [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Mat, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLID-STATE NANOPORES; DESIGNED DNA CARRIERS; PLASMONIC NANOPORES; BIPOLAR ELECTROCHEMISTRY; NUCLEIC-ACIDS; SENSORS; NANOPARTICLES; FABRICATION; ELECTRODE; PROTEINS;
D O I
10.1016/j.coelec.2017.12.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-molecule sensing opens avenues of studying the population heterogeneities and the conformational dynamics of system ranging from single DNAs to single proteins. Nanopores providing the electrochemically confined space for accommodation of single analytes, directly convert the single-molecule behaviors into the measurable electrochemical read-outs with high signal-to-noise ratio. A good volume of researches exists on nanopore-based electrochemical detection ranging from nucleic acids, peptides, proteins, and biomolecular complexes to organic polymers and small molecules. Due to the advantage of nanopore confinement, new sensing mechanisms have been reported to shed light on single-molecule structure and activity correlation. In this review, we provide an overview of the electrochemically confined effects in a nanopore on the aspects ranging from single-molecule volume exclusion, redox process confinement, and electromagnetic field enhancement. The electrochemically confined effects would provide nanopore a series of vivid and exciting discoveries in single-molecule analysis of biological processes and chemical reactions.
引用
收藏
页码:172 / 178
页数:7
相关论文
共 58 条
[1]   Scanning Electrochemical Microscopy [J].
Amemiya, Shigeru ;
Bard, Allen J. ;
Fan, Fu-Ren F. ;
Mirkin, Michael V. ;
Unwin, Patrick R. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (01) :95-131
[2]   Light-Enhancing Plasmonic-Nanopore Biosensor for Superior Single-Molecule Detection [J].
Assad, Ossama N. ;
Gilboa, Tal ;
Spitzberg, Joshua ;
Juhasz, Matyas ;
Weinhold, Elmar ;
Meller, Amit .
ADVANCED MATERIALS, 2017, 29 (09)
[3]   Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA [J].
Belkin, Maxim ;
Chao, Shu-Han ;
Jonsson, Magnus P. ;
Dekker, Cees ;
Aksimentiev, Aleksei .
ACS NANO, 2015, 9 (11) :10598-10611
[4]  
Bell NAW, 2016, NAT NANOTECHNOL, V11, P645, DOI [10.1038/NNANO.2016.50, 10.1038/nnano.2016.50]
[5]   Specific Protein Detection Using Designed DNA Carriers and Nanopores [J].
Bell, Nicholas A. W. ;
Keyser, Ulrich F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) :2035-2041
[6]   Capillary-assisted bipolar electrochemistry: A focused mini review [J].
Bouffier, Laurent ;
Sojic, Neso ;
Kuhn, Alexander .
ELECTROPHORESIS, 2017, 38 (21) :2687-2694
[7]   Automated Fabrication of 2-nm Solid-State Nanopores for Nucleic Acid Analysis [J].
Briggs, Kyle ;
Kwok, Harold ;
Tabard-Cossa, Vincent .
SMALL, 2014, 10 (10) :2077-2086
[8]   Selective Detection and Quantification of Modified DNA with Solid-State Nanopores [J].
Carlsen, Autumn T. ;
Zahid, Osama K. ;
Ruzicka, Jan A. ;
Taylor, Ethan W. ;
Hall, Adam R. .
NANO LETTERS, 2014, 14 (10) :5488-5492
[9]   Ionic Current-Based Mapping of Short Sequence Motifs in Single DNA Molecules Using Solid-State Nanopores [J].
Chen, Kaikai ;
Juhasz, Matyas ;
Gularek, Felix ;
Weinhold, Elmar ;
Tian, Yu ;
Keyser, Ulrich F. ;
Bell, Nicholas A. W. .
NANO LETTERS, 2017, 17 (09) :5199-5205
[10]   Electrochemical detection of nanoparticles by 'nano-impact' methods [J].
Cheng, Wei ;
Compton, Richard G. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2014, 58 :79-89