The recent progress of pitch-based carbon anodes in sodium-ion batteries

被引:146
作者
Jiang, Mingchi [1 ]
Sun, Ning [2 ]
Soomro, Razium Ali [2 ]
Xu, Bin [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2021年 / 55卷
基金
国家重点研发计划;
关键词
Pitch; Carbon anode; Sodium-ion batteries; Structure regulation; Electrochemical performance; COAL-TAR PITCH; DOPED CARBON; SOFT CARBON; MESOCARBON-MICROBEADS; POROUS CARBON; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; GRAPHENE NANOSHEETS; MESOPOROUS CARBON; AMORPHOUS-CARBON;
D O I
10.1016/j.jechem.2020.07.002
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Sodium-ion batteries (SIBs) have attracted significant attentions as promising alternatives to lithium-ion batteries for large-scale energy storage applications. Here carbon materials are considered as the most competitive anodes for SIBs based on their low-cost, abundant availability and excellent structural stability. Pitch, with high carbon content and low cost, is an ideal raw precursor to prepare carbon materials for large-scale applications. Nevertheless, the microstructures of pitch-based carbon are highly ordered with smaller interlayer distances, which are unfavorable for Na ion storage. Many efforts have been made to improve the sodium storage performance of pitch-based carbon materials. This review summarizes the recent progress about the application of pitch-based carbons for SIBs anodes in the context of carbon's morphology and structure regulation strategies, including morphology adjustment, heteroatoms doping, fabricating heterostructures, and the increase of the degree of disorder. Besides, the advantages, present challenges, and possible solutions to current issues in pitch-based carbon anode are discussed, with the highlight of future research directions. This review will provide a deep insight into the development of low-cost and high-performance pitch-based carbon anode for SIBs. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:34 / 47
页数:14
相关论文
共 104 条
[1]   Understanding the improved electrochemical performance of nitrogen-doped hard carbons as an anode for sodium ion battery [J].
Agrawal, Ashutosh ;
Janakiraman, S. ;
Biswas, Koushik ;
Venimadhav, A. ;
Srivastava, S. K. ;
Ghosh, Sudipto .
ELECTROCHIMICA ACTA, 2019, 317 :164-172
[2]   Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells [J].
Alcántara, R ;
Madrigal, FJF ;
Lavela, P ;
Tirado, JL ;
Mateos, JMJ ;
de Salazar, CG ;
Stoyanova, R ;
Zhecheva, E .
CARBON, 2000, 38 (07) :1031-1041
[3]   Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation [J].
Angel Munoz-Marquez, Miguel ;
Saurel, Damien ;
Luis Gomez-Camer, Juan ;
Casas-Cabanas, Montse ;
Castillo-Martinez, Elizabeth ;
Rojo, Teofilo .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[4]   Porous Electrode Materials for Lithium-Ion Batteries - How to Prepare Them and What Makes Them Special [J].
Anh Vu ;
Qian, Yuqiang ;
Stein, Andreas .
ADVANCED ENERGY MATERIALS, 2012, 2 (09) :1056-1085
[5]   CHEMICAL-CHANGES DURING THE MILD AIR OXIDATION OF PITCH [J].
BARR, JB ;
LEWIS, IC .
CARBON, 1978, 16 (06) :439-444
[6]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[7]   Structural Identification of the Monomeric Constituents of Petroleum Pitch [J].
Burgess, W. A. ;
Pittman, J. J. ;
Marcus, R. K. ;
Thies, M. C. .
ENERGY & FUELS, 2010, 24 (08) :4301-4311
[8]   Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance [J].
Cao, Bin ;
Liu, Huan ;
Xu, Bin ;
Lei, Yaofei ;
Chen, Xiaohong ;
Song, Huaihe .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (17) :6472-6478
[9]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[10]   Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices [J].
Chen, Shaohua ;
Qiu, Ling ;
Cheng, Hui-Ming .
CHEMICAL REVIEWS, 2020, 120 (05) :2811-2878