Braid groups and the co-Hopfian property

被引:29
作者
Bell, Robert W. [1 ]
Margalit, Dan [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
braid groups; mapping class groups; co-Hopfian;
D O I
10.1016/j.jalgebra.2005.10.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-n be the braid group on n >= 4 strands. We prove that B-n modulo its center is co-Hopfian. We then show that any injective endomorphism of B-n is geometric in the sense that it is induced by a homeomorphism of a punctured disk. We further prove that any injection from B-n to Bn+1 is geometric for n >= 7. Additionally, we obtain analogous results for mapping class groups of punctured spheres. The methods use Thurston's theory of surface homeomorphisms and build upon work of Ivanov-McCarthy. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 294
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 2002, ALGEBR GEOM TOPOL
[2]  
[Anonymous], 2002, ALGEBR GEOM TOPOL
[3]  
BEHRSTOCK J, IN PRESS GEOM DEDICA
[4]  
BELL RW, MATHGR0501051
[5]   Braid groups are linear [J].
Bigelow, SJ .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) :471-486
[6]  
Birman J.S., 1974, Annals of Mathematics Studies, V82
[7]   LIFTING AND PROJECTING HOMEOMORPHISMS [J].
BIRMAN, JS ;
HILDEN, HM .
ARCHIV DER MATHEMATIK, 1972, 23 (04) :428-&
[8]   ABELIAN AND SOLVABLE SUBGROUPS OF THE MAPPING CLASS GROUP [J].
BIRMAN, JS ;
LUBOTZKY, A ;
MCCARTHY, J .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (04) :1107-1120
[9]   ISOTOPIES OF HOMEOMORPHISMS OF RIEMANN SURFACES [J].
BIRMAN, JS ;
HILDEN, HM .
ANNALS OF MATHEMATICS, 1973, 97 (03) :424-439
[10]  
Birman JS., 1971, Ann. Math. Stud., V66, P81