Effect of osmotic stress on glutathione and hydroxymethylglutathione accumulation in wheat

被引:29
作者
Kocsy, G [1 ]
Szalai, G [1 ]
Galiba, G [1 ]
机构
[1] Hungarian Acad Sci, Agr Res Inst, H-2462 Martonvasar, Hungary
基金
匈牙利科学研究基金会;
关键词
chromosome; 5A; glutathione; hydroxymethylglutathione; osmotic stress; wheat;
D O I
10.1016/j.jplph.2003.12.006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effect of osmotic stress on glutathione and hydroxymethylglutathione levels was compared in three wheat genotypes and two 5A chromosome substitution lines. Freezing-tolerant genotypes seemed also to be tolerant to osmotic stress induced by polyethylene glycol (PEG), since their fresh weight was not affected by the treatment. However, the growth of freezing-sensitive genotypes was reduced by 7-day PEG treatment and they had greater injuries after osmotic stress. The reduced forms of the two glutathione precursors, cysteine and gamma-glutamylcysteine, and of hydroxy-methylglutathione (hmGSH) and glutathione (GSH) were present in greater quantities after PEG treatment in the two tolerant genotypes than in the sensitive ones. Similarly, osmotic stress resulted in a higher ratio of the reduced to the oxidised form of these thiols and in greater activity of gamma-glutamylcysteine synthetase and glutathione reductase in the tolerant genotypes compared to the sensitive ones. Following in vivo glutathione synthesis, a greater incorporation of radioactivity from [S-35] sulphate into the four thiols was found in the tolerant genotypes than in the sensitive ones during osmotic stress. The present results indicate that hmGSH and GSH may contribute to the improvement of tolerance against osmotic stress in wheat and that the 5A chromosome influences the stress-induced changes in GSH and hmGSH levels. (C) 2004 Elsevier GmbH. All rights reserved.
引用
收藏
页码:785 / 794
页数:10
相关论文
共 54 条
[1]  
Alscher RG, 1997, PHYSIOL PLANTARUM, V100, P224, DOI 10.1034/j.1399-3054.1997.1000203.x
[2]  
BAISAK R, 1994, PLANT CELL PHYSIOL, V35, P489
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   REGULATION OF SULFATE ASSIMILATION BY NITROGEN NUTRITION IN THE DUCKWEED LEMNA-MINOR-L [J].
BRUNOLD, C ;
SUTER, M .
PLANT PHYSIOLOGY, 1984, 76 (03) :579-583
[5]   Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures [J].
Bueno, P ;
Piqueras, A ;
Kurepa, J ;
Savouré, A ;
Verbruggen, N ;
Van Montagu, M ;
Inzé, D .
PLANT SCIENCE, 1998, 138 (01) :27-34
[6]   Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae [J].
Cattivelli, L ;
Baldi, P ;
Crosatti, C ;
Di Fonzo, N ;
Faccioli, P ;
Grossi, M ;
Mastrangelo, AM ;
Pecchioni, N ;
Stanca, AM .
PLANT MOLECULAR BIOLOGY, 2002, 48 (05) :649-665
[7]  
Chen YouQiang, 2000, Chinese Journal of Oil Crop Sciences, V22, P53
[8]   Comparative anatomical, morphological, and physiological parameters controlling photosynthesis in two Populusxeuramericana clones during short-term osmotic treatment [J].
Courtois, M ;
Boudouresque, E ;
Guerrier, G .
PHOTOSYNTHETICA, 1999, 37 (01) :87-96
[9]  
CREISSEN G, 1992, PLANT J, V2, P129
[10]   TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals [J].
Danyluk, J ;
Kane, NA ;
Breton, G ;
Limin, AE ;
Fowler, DB ;
Sarhan, F .
PLANT PHYSIOLOGY, 2003, 132 (04) :1849-1860