On the condition number of linear least squares problems in a weighted Frobenius norm

被引:47
作者
Gratton, S [1 ]
机构
[1] CERFACS, F-31057 TOULOUSE, FRANCE
关键词
least squares; condition number; backward error analysis;
D O I
10.1007/BF01731931
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let A be an m x n, m greater than or equal to n full rank real matrix and b a real vector of size m. We give in this paper an explicit formula for the condition number of the linear least squares problem (LLSP) defined by min //Ax - b//(2), x epsilon R(n). Let alpha and beta be two positive real numbers, we choose the weighted Frobenius norm //[alpha A, beta b]//(F) on the data and the usual Euclidean norm on the solution. A straightforward generalization of the backward error of [9] to this norm is also provided. This allows us to carry out a first-order estimate of the forward error for the LLSP with this norm. This enables us to perform a complete backward error analysis in the chosen norms. Finally, some numerical results are presented in the last section on matrices from the collection of [5]. Three algorithms have been tested: the QR factorization, the Normal Equations (NE), the Semi-Normal Equations (SNE).
引用
收藏
页码:523 / 530
页数:8
相关论文
共 11 条
[1]   STABILITY ANALYSIS OF THE METHOD OF SEMINORMAL EQUATIONS FOR LINEAR LEAST-SQUARES PROBLEMS [J].
BJORCK, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 88-9 :31-48
[2]  
Bjorck AA., 1996, Numerical Methods for Least Squares Problems
[3]  
CHAITINCHATELIN F, 1996, LECTURES FINITE PREC
[4]  
GEURTS AJ, 1982, NUMER MATH, V39, P85, DOI 10.1007/BF01399313
[5]  
Higham N. J., 1996, ACCURACY STABILITY N
[6]   A COLLECTION OF TEST MATRICES IN MATLAB [J].
HIGHAM, NJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (03) :289-305
[7]  
*MATHW, 1992, MATLAB REF GUID
[8]  
Rice J., 1966, SIAM J. Numer. Anal., V3, P287, DOI [DOI 10.1137/0703023, 10.1137/0703023]
[9]   OPTIMAL BACKWARD PERTURBATION BOUNDS FOR THE LINEAR LEAST-SQUARES PROBLEM [J].
WALDEN, B ;
KARLSON, R ;
SUN, JG .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1995, 2 (03) :271-286
[10]  
Wedin P.-A., 1973, BIT (Nordisk Tidskrift for Informationsbehandling), V13, P217, DOI 10.1007/BF01933494