Euler hydrodynamics of one-dimensional attractive particle systems

被引:17
|
作者
Bahadoran, C. [1 ]
Guiol, H.
Ravishankar, K.
Saada, E.
机构
[1] Univ Clermont Ferrand 2, Math Lab, F-63177 Clermont Ferrand, France
[2] SUNY Albany, Coll New Paltz, New Paltz, NY 12561 USA
[3] Fac Med, INP Grenoble, TIMB, TIMC, F-38706 La Tronche, France
[4] Univ Rouen, CNRS, UMR 6085, F-76801 St Etienne, France
来源
ANNALS OF PROBABILITY | 2006年 / 34卷 / 04期
关键词
hydrodynamics; attractive particle system; nonexplicit invariant measures; nonconvex or nonconcave flux; entropy solution; Glimm scheme;
D O I
10.1214/009117906000000115
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider attractive irreducible conservative particle systems on Z, without necessarily nearest-neighbor jumps or explicit invariant measures. We prove that for such systems, the hydrodynamic limit under Enter time scaling exists and is given by the entropy solution to some scalar conservation law with Lipschitz-continuous flux. Our approach is a generalization of Bahadoran et al. [Stochastic Process. Appl. 99 (2002) 1-30], from which we relax the assumption that the process has explicit invariant measures.
引用
收藏
页码:1339 / 1369
页数:31
相关论文
共 50 条
  • [1] Constructive Euler Hydrodynamics for One-Dimensional Attractive Particle Systems
    Bahadoran, Christophe
    Guiol, Herve
    Ravishankar, Krishnamurthi
    Saada, Ellen
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 43 - 89
  • [2] Euler hydrodynamics for attractive particle systems in random environment
    Bahadoran, C.
    Guiol, H.
    Ravishankar, K.
    Saada, E.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02): : 403 - 424
  • [3] Blockage hydrodynamics of one-dimensional driven conservative systems
    Bahadoran, C
    ANNALS OF PROBABILITY, 2004, 32 (1B): : 805 - 854
  • [4] Diffusion and cluster formation in one-dimensional systems with attractive interactions
    Helseth, LE
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (13): : 6943 - 6948
  • [5] On one-dimensional models for hydrodynamics
    Escudero, Carlos
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 217 (01) : 58 - 63
  • [6] HYDRODYNAMICS OF A ONE-DIMENSIONAL GRANULAR MEDIUM
    SELA, N
    GOLDHIRSCH, I
    PHYSICS OF FLUIDS, 1995, 7 (03) : 507 - 525
  • [7] Singularities in one-dimensional Euler flows
    Roop, Mikhail
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 166
  • [8] CHARGED-PARTICLE TRANSPORT IN ONE-DIMENSIONAL SYSTEMS
    MUTHUKRISHNAN, G
    GOPINATH, DV
    RADIATION RESEARCH, 1983, 95 (01) : 1 - 14
  • [9] Phase separation in one-dimensional stochastic particle systems?
    Schuetz, G. M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (04): : 523 - 535
  • [10] Mixing and perfect sampling in one-dimensional particle systems
    Lei, Ze
    Krauth, Werner
    EPL, 2018, 124 (02)