The covalent immobilization of proteins onto surfaces is an essential aspect of several fields of research, including proteomics, sensing, heterogeneous biocatalysis, and more broadly biotechnology. Site-specific, covalent attachment of proteins has been achieved in recent years by the use of expanded genetic codes to produce proteins with controlled placement of un-natural amino acids bearing bio-orthogonal functional groups. Unfortunately, the complexity of developing such systems is impractical for most laboratories; hence, a less complicated approach to generating un-natural amino acid side-chains has been employed. Utilizing a straightforward reaction with formylglycine generating enzyme, we use the site-specific modification of engineered proteins to yield un-natural amino acid side-chains for protein immobilization. Using this approach, we demonstrate the controlled immobilization of various enzymes onto a variety of amine coated surfaces. Our results reveal reusability of the immobilized enzymes via this strategy, and furthermore, we find the activity of the immobilized enzymes to remain even after a month of use indicating significant stability of the linkage. (c) 2014 Elsevier B.V. All rights reserved.