Observability of linear systems with commensurate delays and unknown inputs

被引:29
作者
Javier Bejarano, Francisco [1 ]
Zheng, Gang [2 ]
机构
[1] SEPI, ESIME Ticoman, IPN, Mexico City 07340, DF, Mexico
[2] Non A, INRIA Lille Nord Europe, F-59650 Villeneuve Dascq, France
关键词
Delay systems; Commensurate delays; Observability; Unknown inputs; OBSERVERS; CONTROLLABILITY; INVERSION; DESIGN;
D O I
10.1016/j.automatica.2014.05.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the observability analysis for linear time systems whose outputs are affected by unknown inputs. Three different definitions of observability are proposed. By introducing the Smith form and comparing the invariant factors, a sufficient condition is deduced for each proposed observability definition. Three examples are given for the purpose of highlighting the effectiveness of the proposed approach. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2077 / 2083
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 1969, Topics in Mathematical System Theory
[2]   MODAL CHARACTERIZATIONS OF CONTROLLABILITY AND OBSERVABILITY IN TIME-DELAY SYSTEMS [J].
BHAT, KPM ;
KOIVO, HN .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :292-293
[3]  
Brewer J.W., 1986, LINEAR SYSTEMS COMMU
[4]  
Conte G, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P6054
[5]  
Conte G, 2007, LECT NOTES CONTR INF, V352, P267
[6]  
Darouach M., 2006, 2006 14 MED C CONTR, P1
[7]  
Fattouh A., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P4222, DOI 10.1109/CDC.1999.828024
[8]  
Fliess M., 1998, ESAIM. Control, Optimisation and Calculus of Variations, V3, P301, DOI 10.1051/cocv:1998111
[9]  
Fu YM, 2004, INT J CONTROL AUTOM, V2, P530
[10]   OBSERVABILITY AND RELATED STRUCTURAL RESULTS FOR LINEAR HEREDITARY-SYSTEMS [J].
LEE, EB ;
OLBROT, A .
INTERNATIONAL JOURNAL OF CONTROL, 1981, 34 (06) :1061-1078