Soliton dynamics for fractional Schrodinger equations

被引:53
作者
Secchi, Simone [1 ]
Squassina, Marco [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
关键词
soliton dynamics; fractional Schrodinger equation; ground states; GROUND-STATES; STABILITY; UNIQUENESS;
D O I
10.1080/00036811.2013.844793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the soliton dynamics for the fractional nonlinear Schrodinger equation by a suitable modulational inequality. In the semiclassical limit, the solution concentrates along a trajectory determined by a Newtonian equation depending of the fractional diffusion parameter.
引用
收藏
页码:1702 / 1729
页数:28
相关论文
共 29 条
[1]   On the Dynamics of Solitons in the Nonlinear Schrodinger Equation [J].
Benci, Vieri ;
Ghimenti, Marco ;
Micheletti, Anna Maria .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :467-492
[2]   The nonlinear Schroedinger equation: Solitons dynamics [J].
Benci, Vieri ;
Ghimenti, Marco ;
Micheletti, Anna Maria .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (12) :3312-3341
[3]  
Bronski JC, 2000, MATH RES LETT, V7, P329
[4]  
Cabre X., T AM MATH S IN PRESS
[5]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[6]  
D'Avenia P, MATH MODELS IN PRESS
[7]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[8]  
Edmunds D.E., 2018, Spectral Theory and Differential Operators, Vsecond
[9]  
Fall MM, COMMUNICATI IN PRESS
[10]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262