Rotational Low-Impedance Physical Human-Robot Interaction Using Underactuated Redundancy

被引:10
作者
Audet, Julien M. [1 ]
Gosselin, Clement [1 ]
机构
[1] Univ Laval, Dept Mech Engn, Quebec City, PQ G1V0A6, Canada
来源
JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME | 2021年 / 13卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
physical human-robot interaction; industrial robots; passive-active mechanism; mechanical impedance; underactuated robot; STABILITY; COOPERATION;
D O I
10.1115/1.4048258
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper extends the concept of underactuated redundancy for physical human-robot interaction (pHRI) in a context of industrial assembly by introducing a novel 1-dof gravity balanced rotational manipulator. The proposed architecture consists of a rotational active counterweight with a passive joint equipped with an encoder. The proposed architecture is first described, and the static equilibrium conditions are used to describe the operation of the mechanism. Then, alternative architectures are briefly introduced. Finally, an experimental validation is provided to demonstrate the viability of the concept for rotational low impedance pHRI.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Human Modeling in Physical Human-Robot Interaction: A Brief Survey [J].
Fang, Cheng ;
Peternel, Luka ;
Seth, Ajay ;
Sartori, Massimo ;
Mombaur, Katja ;
Yoshida, Eiichi .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) :5799-5806
[32]   Physical Human-Robot Interaction (pHRI) in 6 DOF With Asymmetric Cooperation [J].
Whitsell, Bryan ;
Artemiadis, Panagiotis .
IEEE ACCESS, 2017, 5 :10834-10845
[33]   Involuntary Stabilization in Discrete-Event Physical Human-Robot Interaction [J].
Muramatsu, Hisayoshi ;
Itaguchi, Yoshihiro ;
Katsura, Seiichiro .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (01) :576-587
[34]   A Machine Learning Approach to Resolving Conflicts in Physical Human-Robot Interaction [J].
Ulas Dincer, Enes ;
Al-Saadi, Zaid ;
Hamad, Yahya M. ;
Aydin, Yusuf ;
Kucukyilmaz, Ayse ;
Basdogan, Cagatay .
ACM TRANSACTIONS ON HUMAN-ROBOT INTERACTION, 2025, 14 (02)
[35]   Charting User Experience in Physical Human-Robot Interaction [J].
Seifi, Hasti ;
Bhatia, Arpit ;
Hornbaek, Kasper .
ACM TRANSACTIONS ON HUMAN-ROBOT INTERACTION, 2024, 13 (02) :1-29
[36]   Autonomy in Physical Human-Robot Interaction: A Brief Survey [J].
Selvaggio, Mario ;
Cognetti, Marco ;
Nikolaidis, Stefanos ;
Ivaldi, Serena ;
Siciliano, Bruno .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) :7989-7996
[37]   PHYSICAL HUMAN-ROBOT INTERACTION BY OBSERVING ACTUATOR CURRENTS [J].
Erden, Mustafa S. ;
Jonkman, Jochem A. .
INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2012, 27 (03) :233-243
[38]   Calculating the Supplied Energy for Physical Human-Robot Interaction [J].
Liu, Jian ;
Yamada, Yoji ;
Akiyama, Yasuhiro .
2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SAFETY FOR ROBOTICS (ISR), 2021, :157-160
[39]   Adaptive technique for physical human-robot interaction handling using proprioceptive sensors [J].
Popov, Dmitry ;
Pashkevich, Anatol ;
Klimchik, Alexandr .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
[40]   Learning-based Adaptive Optimal Impedance Control to Enhance Physical Human-robot Interaction Performance [J].
Yida Guo ;
Yang Tian ;
Haoping Wang .
International Journal of Control, Automation and Systems, 2022, 20 :3053-3062