Recombination lifetime characterization and mapping of silicon wafers and detectors using the microwave photoconductivity decay (μPCD) technique

被引:9
作者
Harkonen, J.
Tuovinen, E.
Li, Z.
Luukka, P.
Verbitskaya, E.
Eremin, V.
机构
[1] Univ Helsinki, Helsinki Inst Phys, Helsinki 00014, Finland
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] Russian Acad Sci, Ioffe Physicotech Inst, St Petersburg, Russia
基金
芬兰科学院;
关键词
silicon; lifetime; particle detector;
D O I
10.1016/j.mssp.2006.01.049
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recombination lifetime in oxidized high-resistivity silicon has been characterized by the microwave photoconductivity decay (mu PCD) technique. In this technique, a silicon wafer is illuminated by a laser pulse that generates electron hole pairs. The transient of the decaying carrier concentration is monitored by using a microwave signal. The recombination lifetime is a measure of the material quality, i.e., defect/impurity concentration which affects the quality of the resulting detectors and their electrical properties. The mu PCD technique is a non-contact and non-invasive technique that can map recombination lifetime of the entire wafer before it is selected for device/detector processing. The recombination lifetime mapping on a wafer is realized by a 2D color imaging code representing the range of the lifetime in mu s. In general, the recombination lifetime is the smallest around the wafer edges (about 1000-2000 mu s), and highest in the center of the wafer (5000-10,000 mu s). The recombination lifetime has been measured under different injection levels and surface charge conditions. The results show that the lifetime in investigated n-type materials is almost independent of the injection level if the passivating SiO2 film is corona charged. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:261 / 265
页数:5
相关论文
共 10 条
[1]   Processing of microstrip detectors on Czochralski grown high resistivity silicon substrates [J].
Härkönen, J ;
Tuominen, E ;
Tuovinen, E ;
Mehtälä, P ;
Lassila-Perini, K ;
Ovchinnikov, V ;
Heikkilä, P ;
Yli-Koski, M ;
Palmu, L ;
Kallijärvi, S ;
Nikkilä, H ;
Anttila, O ;
Niinikoski, T ;
Eremin, V ;
Ivanov, A ;
Verbitskaya, E .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 514 (1-3) :173-179
[2]   Processing and recombination lifetime characterization of silicon microstrip detectors [J].
Härkönen, J ;
Tuominen, E ;
Lassila-Perini, K ;
Palokangas, M ;
Yli-Koski, M ;
Ovchinnikov, V ;
Heikkilä, P ;
Palmu, L ;
Kallijärvi, S .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2002, 485 (1-2) :159-165
[3]   INVESTIGATION OF THE OXYGEN-VACANCY (A-CENTER) DEFECT COMPLEX PROFILE IN NEUTRON-IRRADIATED HIGH-RESISTIVITY SILICON JUNCTION PARTICLE DETECTORS [J].
LI, Z ;
KRANER, HW ;
VERBITSKAYA, E ;
EREMIN, V ;
IVANOV, A ;
RATTAGGI, M ;
RANCOITA, PG ;
RUBINELLI, FA ;
FONASH, SJ ;
DALE, C ;
MARSHALL, P .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1992, 39 (06) :1730-1738
[4]  
LUTZ G, 2001, SEMICONDUCTOR RAD DE, P260
[5]   Capture cross sections of the acceptor level of iron-boron pairs in p-type silicon by injection-level dependent lifetime measurements [J].
Macdonald, D ;
Cuevas, A ;
Wong-Leung, J .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (12) :7932-7939
[6]   Simulation of large-scale silicon melt flow in magnetic Czochralski growth [J].
Savolainen, V ;
Heikonen, J ;
Ruokolainen, J ;
Anttila, O ;
Laakso, M ;
Paloheimo, J .
JOURNAL OF CRYSTAL GROWTH, 2002, 243 (02) :243-260
[7]  
Schroder D.K., 1998, ASTM STP, V1340
[8]   Dependence of effective carrier lifetime in iron-doped silicon crystals on the carrier injection level [J].
Watanabe, K .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (11) :1713-1717
[9]   INCREASE IN EFFECTIVE CARRIER LIFETIME OF SILICON AT LOW CARRIER INJECTION LEVELS [J].
WATANABE, K .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1994, 9 (04) :370-372
[10]  
9438 CERNLHCC